2009/04/16 05:06:03 58.7480 -137.5850 8.0 4.80 Alaska
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2009/04/16 05:06:03:0 58.75 -137.59 8.0 4.8 Alaska Stations used: AK.BESE AK.PNL AT.CRAG AT.SKAG CN.DAWY CN.DLBC CN.WHY US.WRAK Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 6.38e+22 dyne-cm Mw = 4.47 Z = 22 km Plane Strike Dip Rake NP1 309 60 87 NP2 135 30 95 Principal Axes: Axis Value Plunge Azimuth T 6.38e+22 75 211 N 0.00e+00 2 311 P -6.38e+22 15 41 Moment Tensor: (dyne-cm) Component Value Mxx -3.03e+22 Mxy -2.75e+22 Mxz -2.59e+22 Myy -2.48e+22 Myz -1.91e+22 Mzz 5.51e+22 -------------- ---------------------- ------------------------ - ------------------------- P -- -##########---------------- ---- --##############-------------------- --##################------------------ ---#####################---------------- ---#######################-------------- ----#########################------------- ----###########################----------- -----############# ###########---------- ------############ T #############-------- -----############ ##############------ ------#############################----- -------###########################---- -------###########################-- --------#########################- ---------##################### ------------##############-- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 5.51e+22 -2.59e+22 1.91e+22 -2.59e+22 -3.03e+22 2.75e+22 1.91e+22 2.75e+22 -2.48e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090416050603/index.html |
STK = 135 DIP = 30 RAKE = 95 MW = 4.47 HS = 22.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2009/04/16 05:06:03:0 58.75 -137.59 8.0 4.8 Alaska Stations used: AK.BESE AK.PNL AT.CRAG AT.SKAG CN.DAWY CN.DLBC CN.WHY US.WRAK Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 6.38e+22 dyne-cm Mw = 4.47 Z = 22 km Plane Strike Dip Rake NP1 309 60 87 NP2 135 30 95 Principal Axes: Axis Value Plunge Azimuth T 6.38e+22 75 211 N 0.00e+00 2 311 P -6.38e+22 15 41 Moment Tensor: (dyne-cm) Component Value Mxx -3.03e+22 Mxy -2.75e+22 Mxz -2.59e+22 Myy -2.48e+22 Myz -1.91e+22 Mzz 5.51e+22 -------------- ---------------------- ------------------------ - ------------------------- P -- -##########---------------- ---- --##############-------------------- --##################------------------ ---#####################---------------- ---#######################-------------- ----#########################------------- ----###########################----------- -----############# ###########---------- ------############ T #############-------- -----############ ##############------ ------#############################----- -------###########################---- -------###########################-- --------#########################- ---------##################### ------------##############-- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 5.51e+22 -2.59e+22 1.91e+22 -2.59e+22 -3.03e+22 2.75e+22 1.91e+22 2.75e+22 -2.48e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090416050603/index.html |
Moment tensor inversion summary for event 2009/04/16 05:06 This is a fully automatic solution. It has not yet been reviewed by a seismologist.2009/04/16 05:06 Date 2009/04/16 Region: Southeastern Alaska Mw=4.5 Centroid Location: Time 05:06; Lat. 58.73N; Lon. 222.33W; Depth 20 km Best Double Couple: Plane 1: strike = 312; dip = 47; rake = 95 Plane 2: strike = 126; dip = 43; rake = 85 Moment Tensor: Mo = 5.54533e+22 dyn-cm Mxx = -335.204; Mxy = -269.245; Mxz = -5.077 Myy = -217.913; Myz = -45.846; Mzz = 553.117 Principal Axes: T: value = 84.000; azimuth = 282; plunge = 86 N: value = 80.000; azimuth = 39; plunge = 2 P: value = 78.000; azimuth = 129; plunge = 3 |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 145 35 -85 4.11 0.4601 WVFGRD96 1.0 320 50 -95 4.15 0.4604 WVFGRD96 2.0 145 40 -85 4.24 0.5270 WVFGRD96 3.0 145 40 -85 4.29 0.4572 WVFGRD96 4.0 185 90 20 4.25 0.3893 WVFGRD96 5.0 175 15 -35 4.30 0.4050 WVFGRD96 6.0 175 15 -35 4.30 0.4628 WVFGRD96 7.0 180 15 -30 4.29 0.5064 WVFGRD96 8.0 170 15 -40 4.38 0.5415 WVFGRD96 9.0 170 15 -40 4.38 0.5834 WVFGRD96 10.0 175 15 -35 4.38 0.6139 WVFGRD96 11.0 185 15 -25 4.38 0.6361 WVFGRD96 12.0 175 15 -35 4.39 0.6527 WVFGRD96 13.0 180 15 -30 4.39 0.6644 WVFGRD96 14.0 285 15 75 4.39 0.6701 WVFGRD96 15.0 135 30 95 4.43 0.6914 WVFGRD96 16.0 135 30 95 4.44 0.7186 WVFGRD96 17.0 135 30 95 4.44 0.7395 WVFGRD96 18.0 135 30 95 4.45 0.7545 WVFGRD96 19.0 135 30 95 4.45 0.7648 WVFGRD96 20.0 305 60 85 4.46 0.7707 WVFGRD96 21.0 135 30 95 4.47 0.7750 WVFGRD96 22.0 135 30 95 4.47 0.7755 WVFGRD96 23.0 305 60 85 4.48 0.7730 WVFGRD96 24.0 135 30 95 4.48 0.7701 WVFGRD96 25.0 310 60 90 4.48 0.7639 WVFGRD96 26.0 135 30 95 4.49 0.7573 WVFGRD96 27.0 135 30 95 4.49 0.7488 WVFGRD96 28.0 310 60 90 4.50 0.7387 WVFGRD96 29.0 310 60 90 4.50 0.7272
The best solution is
WVFGRD96 22.0 135 30 95 4.47 0.7755
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Thu Apr 16 11:00:08 CDT 2009