2009/03/24 11:55:43 33.3150 -115.7360 5.6 4.70 California
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2009/03/24 11:55:43:0 33.31 -115.74 5.6 4.7 California Stations used: AZ.CRY AZ.FRD AZ.LVA2 AZ.RDM AZ.SOL AZ.TRO AZ.WMC CI.GLA CI.GSC CI.LDF CI.MWC II.PFO IU.TUC TA.R11A TA.W18A TA.X16A TA.X18A TA.Y12C TA.Z14A US.WUAZ UU.KNB Filtering commands used: hp c 0.01 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 1.23e+23 dyne-cm Mw = 4.66 Z = 3 km Plane Strike Dip Rake NP1 150 76 -159 NP2 55 70 -15 Principal Axes: Axis Value Plunge Azimuth T 1.23e+23 4 282 N 0.00e+00 65 183 P -1.23e+23 24 14 Moment Tensor: (dyne-cm) Component Value Mxx -9.12e+22 Mxy -4.78e+22 Mxz -4.33e+22 Myy 1.12e+23 Myz -1.93e+22 Mzz -2.05e+22 -------------- #------------ ------ ####------------ P --------- #####------------ ---------- ########-------------------------- #########-------------------------## ###########-----------------------#### ###########---------------------###### T ############-------------------####### ############-----------------########## ################--------------############ #################-----------############## ##################--------################ ###################---################## ###################-#################### ###############-----################## ##########----------################ ---------------------############# ---------------------######### ---------------------####### ---------------------# -------------- Global CMT Convention Moment Tensor: R T P -2.05e+22 -4.33e+22 1.93e+22 -4.33e+22 -9.12e+22 4.78e+22 1.93e+22 4.78e+22 1.12e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090324115543/index.html |
STK = 55 DIP = 70 RAKE = -15 MW = 4.66 HS = 3.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2009/03/24 11:55:43:0 33.31 -115.74 5.6 4.7 California Stations used: AZ.CRY AZ.FRD AZ.LVA2 AZ.RDM AZ.SOL AZ.TRO AZ.WMC CI.GLA CI.GSC CI.LDF CI.MWC II.PFO IU.TUC TA.R11A TA.W18A TA.X16A TA.X18A TA.Y12C TA.Z14A US.WUAZ UU.KNB Filtering commands used: hp c 0.01 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 1.23e+23 dyne-cm Mw = 4.66 Z = 3 km Plane Strike Dip Rake NP1 150 76 -159 NP2 55 70 -15 Principal Axes: Axis Value Plunge Azimuth T 1.23e+23 4 282 N 0.00e+00 65 183 P -1.23e+23 24 14 Moment Tensor: (dyne-cm) Component Value Mxx -9.12e+22 Mxy -4.78e+22 Mxz -4.33e+22 Myy 1.12e+23 Myz -1.93e+22 Mzz -2.05e+22 -------------- #------------ ------ ####------------ P --------- #####------------ ---------- ########-------------------------- #########-------------------------## ###########-----------------------#### ###########---------------------###### T ############-------------------####### ############-----------------########## ################--------------############ #################-----------############## ##################--------################ ###################---################## ###################-#################### ###############-----################## ##########----------################ ---------------------############# ---------------------######### ---------------------####### ---------------------# -------------- Global CMT Convention Moment Tensor: R T P -2.05e+22 -4.33e+22 1.93e+22 -4.33e+22 -9.12e+22 4.78e+22 1.93e+22 4.78e+22 1.12e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090324115543/index.html |
REAL-TIME SOLUTION: OPERATOR REVIEWED Reviewed On: 03/24/2009 12:35:16 Inversion Method: Complete Waveform Number of Stations used: 6 Stations: CI.BC3 CI.BLY CI.GLA CI.WES CI.DVT CI.BOR Real-Time Solution: ------------------- Event ID : 14433456 Magnitude : 4.73 Depth (km) : 5.6 Origin Time : 03/24/2009 11:55:43:670 Latitude : 33.31 Longitude : -115.74 Further Information at: http://pasadena.wr.usgs.gov/recenteqs/Quakes/ci14433456.htm SCSN Moment Tensor Solution: ---------------------------- Moment Magnitude : 4.78 Depth (km) : 5 Variance Reduction(%): 93.32 Quality Factor : A (A : Mw, MT good enough for distribution) (B : Mw only good enough for distribution) (C : Solution needs review before distribution) Best Fitting Double Couple and CLVD Solution: --------------------------------------------------- Moment Tensor: Scale = 10**21 Dyne-cm Component Value Mxx -163 Mxy -71 Mxz 53.9 Myy 163 Myz 1.89 Mzz 0.404 Best Fitting Double Couple Solution: -------------------------------------------------- Moment Tensor: Scale = 10**23 Dyne-cm Component Value Mxx -1.573 Mxy -0.731 Mxz 0.489 Myy 1.702 Myz 0.013 Mzz -0.129 Principle Axes: Axis Value Plunge Azimuth T 1.862 3 282 N 0.000 74 22 P -1.862 16 192 Best Fitting Double-Couple: Mo = 1.86E+23 Dyne-cm Plane Strike Rake Dip NP1 236 -13 81 NP2 328 -171 77 Moment Magnitude = 4.78 ------- ------------------- ###---------------------- #######---------------------- ##########----------------------- #############--------------------## ################--------------####### ##################----------########### ##################-----############### T ####################################### ##################---################## #################-------################# ##############-----------################ ############--------------############### #########-----------------############# #######--------------------############ ####-----------------------########## #-------------------------######### --------------------------####### ---------- ------------#### -------- P ------------## ----- ----------- ------- Lower Hemisphere Equiangle Projection |
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.01 n 3 lp c 0.05 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 235 75 -15 4.46 0.5054 WVFGRD96 1.0 60 90 0 4.51 0.5514 WVFGRD96 2.0 55 75 -15 4.60 0.6544 WVFGRD96 3.0 55 70 -15 4.66 0.7051 WVFGRD96 4.0 60 85 5 4.70 0.7037 WVFGRD96 5.0 60 80 10 4.73 0.6829 WVFGRD96 6.0 60 75 10 4.75 0.6631 WVFGRD96 7.0 60 75 10 4.76 0.6494 WVFGRD96 8.0 60 70 15 4.79 0.6449 WVFGRD96 9.0 60 70 20 4.79 0.6258 WVFGRD96 10.0 60 65 20 4.80 0.6131 WVFGRD96 11.0 60 65 20 4.80 0.6054 WVFGRD96 12.0 60 70 25 4.80 0.5994 WVFGRD96 13.0 65 65 30 4.81 0.5981 WVFGRD96 14.0 65 60 30 4.82 0.5968 WVFGRD96 15.0 65 60 30 4.83 0.5955 WVFGRD96 16.0 65 65 35 4.83 0.5928 WVFGRD96 17.0 65 65 35 4.83 0.5893 WVFGRD96 18.0 65 65 35 4.84 0.5842 WVFGRD96 19.0 65 65 35 4.84 0.5782 WVFGRD96 20.0 65 65 35 4.85 0.5715 WVFGRD96 21.0 65 65 35 4.86 0.5672 WVFGRD96 22.0 65 65 35 4.86 0.5591 WVFGRD96 23.0 65 65 35 4.87 0.5501 WVFGRD96 24.0 65 65 35 4.87 0.5402 WVFGRD96 25.0 65 65 35 4.88 0.5296 WVFGRD96 26.0 65 65 35 4.88 0.5183 WVFGRD96 27.0 65 65 35 4.88 0.5067 WVFGRD96 28.0 60 65 25 4.88 0.4969 WVFGRD96 29.0 60 65 25 4.89 0.4875
The best solution is
WVFGRD96 3.0 55 70 -15 4.66 0.7051
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.01 n 3 lp c 0.05 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
The following figure shows the stations used in the grid search for the best focal mechanism to fit the surface-wave spectral amplitudes of the Love and Rayleigh waves.
![]() |
|
The surface-wave determined focal mechanism is shown here.
NODAL PLANES STK= 323.28 DIP= 85.30 RAKE= 159.93 OR STK= 54.99 DIP= 70.00 RAKE= 5.00 DEPTH = 9.0 km Mw = 4.87 Best Fit 0.8148 - P-T axis plot gives solutions with FIT greater than FIT90
![]() |
The P-wave first motion data for focal mechanism studies are as follow:
Sta Az Dist First motion
Surface wave analysis was performed using codes from Computer Programs in Seismology, specifically the multiple filter analysis program do_mft and the surface-wave radiation pattern search program srfgrd96.
Digital data were collected, instrument response removed and traces converted
to Z, R an T components. Multiple filter analysis was applied to the Z and T traces to obtain the Rayleigh- and Love-wave spectral amplitudes, respectively.
These were input to the search program which examined all depths between 1 and 25 km
and all possible mechanisms.
![]() |
|
![]() |
Pressure-tension axis trends. Since the surface-wave spectra search does not distinguish between P and T axes and since there is a 180 ambiguity in strike, all possible P and T axes are plotted. First motion data and waveforms will be used to select the preferred mechanism. The purpose of this plot is to provide an idea of the possible range of solutions. The P and T-axes for all mechanisms with goodness of fit greater than 0.9 FITMAX (above) are plotted here. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the Love and Rayleigh wave radiation patterns. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. Because of the symmetry of the spectral amplitude rediation patterns, only strikes from 0-180 degrees are sampled. |
The distribution of broadband stations with azimuth and distance is
Listing of broadband stations used
Since the analysis of the surface-wave radiation patterns uses only spectral amplitudes and because the surfave-wave radiation patterns have a 180 degree symmetry, each surface-wave solution consists of four possible focal mechanisms corresponding to the interchange of the P- and T-axes and a roation of the mechanism by 180 degrees. To select one mechanism, P-wave first motion can be used. This was not possible in this case because all the P-wave first motions were emergent ( a feature of the P-wave wave takeoff angle, the station location and the mechanism). The other way to select among the mechanisms is to compute forward synthetics and compare the observed and predicted waveforms.
The fits to the waveforms with the given mechanism are show below:
![]() |
This figure shows the fit to the three components of motion (Z - vertical, R-radial and T - transverse). For each station and component, the observed traces is shown in red and the model predicted trace in blue. The traces represent filtered ground velocity in units of meters/sec (the peak value is printed adjacent to each trace; each pair of traces to plotted to the same scale to emphasize the difference in levels). Both synthetic and observed traces have been filtered using the SAC commands:
hp c 0.01 n 3 lp c 0.05 n 3
![]() |
![]() |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Tue Mar 24 19:06:56 CDT 2009