Location

2009/02/26 09:52:47 42.5440 -123.8920 37.8 4.10 Oregon

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2009/02/26 09:52:47:0  42.54 -123.89  37.8 4.1 Oregon
 
 Stations used:
   BK.HUMO BK.WDC NC.KRMB UO.PIN US.BMO UW.LCCR UW.TREE 
   UW.UMAT UW.YACT 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 2.43e+22 dyne-cm
  Mw = 4.19 
  Z  = 43 km
  Plane   Strike  Dip  Rake
   NP1      325    70   -75
   NP2      107    25   -125
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.43e+22     24      43
    N   0.00e+00     14     140
    P  -2.43e+22     62     258

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.05e+22
       Mxy     9.10e+21
       Mxz     8.54e+21
       Myy     4.56e+21
       Myz     1.59e+22
       Mzz    -1.51e+22
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              -----#######################           
             ---------################   ##          
           -------------############## T ####        
          ----------------############   #####       
         -------------------###################      
        ---------------------###################     
        -----------------------#################     
       #------------------------#################    
       #------------   -----------###############    
       ##----------- P ------------##############    
       ###----------   -------------#############    
        ##---------------------------###########     
        ####-------------------------###########     
         ####-------------------------########-      
          #####------------------------######-       
           ######----------------------####--        
             #######-----------------------          
              ############--------######--           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.51e+22   8.54e+21  -1.59e+22 
  8.54e+21   1.05e+22  -9.10e+21 
 -1.59e+22  -9.10e+21   4.56e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090226095247/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 325
      DIP = 70
     RAKE = -75
       MW = 4.19
       HS = 43.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
PNSN
 USGS/SLU Moment Tensor Solution
 ENS  2009/02/26 09:52:47:0  42.54 -123.89  37.8 4.1 Oregon
 
 Stations used:
   BK.HUMO BK.WDC NC.KRMB UO.PIN US.BMO UW.LCCR UW.TREE 
   UW.UMAT UW.YACT 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 2.43e+22 dyne-cm
  Mw = 4.19 
  Z  = 43 km
  Plane   Strike  Dip  Rake
   NP1      325    70   -75
   NP2      107    25   -125
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.43e+22     24      43
    N   0.00e+00     14     140
    P  -2.43e+22     62     258

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.05e+22
       Mxy     9.10e+21
       Mxz     8.54e+21
       Myy     4.56e+21
       Myz     1.59e+22
       Mzz    -1.51e+22
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              -----#######################           
             ---------################   ##          
           -------------############## T ####        
          ----------------############   #####       
         -------------------###################      
        ---------------------###################     
        -----------------------#################     
       #------------------------#################    
       #------------   -----------###############    
       ##----------- P ------------##############    
       ###----------   -------------#############    
        ##---------------------------###########     
        ####-------------------------###########     
         ####-------------------------########-      
          #####------------------------######-       
           ######----------------------####--        
             #######-----------------------          
              ############--------######--           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.51e+22   8.54e+21  -1.59e+22 
  8.54e+21   1.05e+22  -9.10e+21 
 -1.59e+22  -9.10e+21   4.56e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090226095247/index.html
	


Fault Plane Parameters for 09022609524k Fault Choice 1 Fault Choice 2 Strike(deg) 120.0 330.0 Dip(deg) 50.0 44.0 Rake(deg) -110.3 -67.5 Fault Type normal normal
PNSN Notable Quake link for this earthquake

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.06 n 3
br c 0.12 0.25 n 4 p 2
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   320    75    15   3.60 0.2469
WVFGRD96    1.0   320    75    10   3.63 0.2604
WVFGRD96    2.0   320    75    10   3.71 0.2941
WVFGRD96    3.0   320    70    10   3.76 0.3052
WVFGRD96    4.0   320    70    10   3.80 0.3033
WVFGRD96    5.0   320    70    10   3.82 0.2917
WVFGRD96    6.0   315    65    -5   3.84 0.2788
WVFGRD96    7.0   315    60   -10   3.84 0.2687
WVFGRD96    8.0   155    75    55   3.84 0.2638
WVFGRD96    9.0   155    75    55   3.83 0.2626
WVFGRD96   10.0   160    75    55   3.81 0.2654
WVFGRD96   11.0   155    80    50   3.81 0.2697
WVFGRD96   12.0   160    80    55   3.80 0.2761
WVFGRD96   13.0   160    80    55   3.80 0.2832
WVFGRD96   14.0   160    80    55   3.80 0.2902
WVFGRD96   15.0   165    80    55   3.80 0.2975
WVFGRD96   16.0   160    85    55   3.80 0.3060
WVFGRD96   17.0   335    90   -50   3.82 0.3134
WVFGRD96   18.0   330    85   -50   3.83 0.3228
WVFGRD96   19.0   330    80   -50   3.84 0.3330
WVFGRD96   20.0   330    80   -55   3.84 0.3439
WVFGRD96   21.0   325    75   -55   3.87 0.3543
WVFGRD96   22.0   325    75   -55   3.88 0.3670
WVFGRD96   23.0   325    70   -55   3.89 0.3807
WVFGRD96   24.0   325    70   -55   3.91 0.3940
WVFGRD96   25.0   325    70   -55   3.92 0.4066
WVFGRD96   26.0   325    70   -60   3.93 0.4188
WVFGRD96   27.0   325    70   -60   3.94 0.4306
WVFGRD96   28.0   325    70   -60   3.95 0.4416
WVFGRD96   29.0   325    70   -60   3.96 0.4516
WVFGRD96   30.0   325    70   -65   3.97 0.4606
WVFGRD96   31.0   325    70   -65   3.98 0.4689
WVFGRD96   32.0   325    65   -65   3.99 0.4764
WVFGRD96   33.0   325    65   -65   4.00 0.4835
WVFGRD96   34.0   325    65   -65   4.01 0.4892
WVFGRD96   35.0   325    65   -65   4.02 0.4942
WVFGRD96   36.0   325    65   -65   4.02 0.4985
WVFGRD96   37.0   325    65   -65   4.03 0.5018
WVFGRD96   38.0   325    65   -65   4.04 0.5050
WVFGRD96   39.0   320    60   -70   4.07 0.5082
WVFGRD96   40.0   325    70   -75   4.17 0.5040
WVFGRD96   41.0   325    70   -75   4.18 0.5068
WVFGRD96   42.0   325    70   -75   4.18 0.5084
WVFGRD96   43.0   325    70   -75   4.19 0.5089
WVFGRD96   44.0   320    65   -75   4.20 0.5088
WVFGRD96   45.0   320    65   -75   4.20 0.5083
WVFGRD96   46.0   320    65   -75   4.21 0.5068
WVFGRD96   47.0   320    65   -75   4.21 0.5048
WVFGRD96   48.0   325    65   -75   4.22 0.5021
WVFGRD96   49.0   320    65   -75   4.22 0.4986
WVFGRD96   50.0   325    65   -70   4.22 0.4948
WVFGRD96   51.0   320    65   -75   4.23 0.4903
WVFGRD96   52.0   320    65   -75   4.23 0.4850
WVFGRD96   53.0   325    65   -70   4.23 0.4798
WVFGRD96   54.0   325    65   -70   4.23 0.4742
WVFGRD96   55.0   325    65   -70   4.23 0.4679
WVFGRD96   56.0   325    65   -70   4.23 0.4617
WVFGRD96   57.0   325    65   -70   4.23 0.4549
WVFGRD96   58.0   325    65   -70   4.24 0.4481
WVFGRD96   59.0   325    65   -70   4.24 0.4417
WVFGRD96   60.0   325    65   -70   4.24 0.4348

The best solution is

WVFGRD96   43.0   325    70   -75   4.19 0.5089

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.06 n 3
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Thu Feb 26 14:20:26 CST 2009

Last Changed 2009/02/26