2009/02/24 16:20:23 62.9270 -143.6790 8.0 3.90 Alaska
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2009/02/24 16:20:23:0 62.93 -143.68 8.0 3.9 Alaska Stations used: AK.DIV AK.MCK AK.PAX AK.PNL AK.SAW AK.SWD AK.TRF AT.PMR IU.COLA US.EGAK Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.10e+22 dyne-cm Mw = 3.96 Z = 13 km Plane Strike Dip Rake NP1 170 79 139 NP2 270 50 15 Principal Axes: Axis Value Plunge Azimuth T 1.10e+22 36 122 N 0.00e+00 48 337 P -1.10e+22 18 226 Moment Tensor: (dyne-cm) Component Value Mxx -2.79e+21 Mxy -8.11e+21 Mxz -4.93e+20 Myy -1.94e+14 Myz 6.81e+21 Mzz 2.79e+21 ###----------- #######--------------- ##########------------------ ###########------------------- #############--------------------- ##############---------------------- #########------##############--------- ######----------##################------ ###-------------#####################--- ##----------------######################-- #-----------------#######################- ------------------######################## -------------------####################### ------------------############ ####### ------------------############ T ####### ------------------########### ###### ---- ----------################### --- P -----------################# - -----------############### ---------------############# -------------######### ----------#### Global CMT Convention Moment Tensor: R T P 2.79e+21 -4.93e+20 -6.81e+21 -4.93e+20 -2.79e+21 8.11e+21 -6.81e+21 8.11e+21 -1.94e+14 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090224162023/index.html |
STK = 270 DIP = 50 RAKE = 15 MW = 3.96 HS = 13.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2009/02/24 16:20:23:0 62.93 -143.68 8.0 3.9 Alaska Stations used: AK.DIV AK.MCK AK.PAX AK.PNL AK.SAW AK.SWD AK.TRF AT.PMR IU.COLA US.EGAK Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 1.10e+22 dyne-cm Mw = 3.96 Z = 13 km Plane Strike Dip Rake NP1 170 79 139 NP2 270 50 15 Principal Axes: Axis Value Plunge Azimuth T 1.10e+22 36 122 N 0.00e+00 48 337 P -1.10e+22 18 226 Moment Tensor: (dyne-cm) Component Value Mxx -2.79e+21 Mxy -8.11e+21 Mxz -4.93e+20 Myy -1.94e+14 Myz 6.81e+21 Mzz 2.79e+21 ###----------- #######--------------- ##########------------------ ###########------------------- #############--------------------- ##############---------------------- #########------##############--------- ######----------##################------ ###-------------#####################--- ##----------------######################-- #-----------------#######################- ------------------######################## -------------------####################### ------------------############ ####### ------------------############ T ####### ------------------########### ###### ---- ----------################### --- P -----------################# - -----------############### ---------------############# -------------######### ----------#### Global CMT Convention Moment Tensor: R T P 2.79e+21 -4.93e+20 -6.81e+21 -4.93e+20 -2.79e+21 8.11e+21 -6.81e+21 8.11e+21 -1.94e+14 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090224162023/index.html |
Moment tensor inversion summary for event 2009/02/24 16:20 Date: 2009/02/24 Time: 16:20 (UTC) Region: East-central Region of Alaska Mw=4.1 Location: Lat. 62.9267; Lon. -143.6793; Depth 10 km (Best-fitting depth from moment tensor inversion) Solution quality: good; Number of stations = 11 Best Double Couple: strike dip rake Plane 1: 168.3 81.2 143.0 Plane 2: 264.9 53.5 11.0 Moment Tensor Parameters: Mo = 1.44756e+22 dyn-cm Mxx = -0.46; Mxy = -1.09; Mxz = -0.04 Myy = 0.22; Myz = 0.86; Mzz = 0.24 Principal Axes: value azimuth plunge T: 1.47 120.02 31.91 N: -0.05 336.86 52.11 P: -1.42 221.84 18.21 |
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 70 50 -30 3.86 0.5365 WVFGRD96 1.0 65 50 -40 3.88 0.5462 WVFGRD96 2.0 65 45 -40 3.93 0.5486 WVFGRD96 3.0 255 35 -25 3.95 0.5344 WVFGRD96 4.0 260 40 -15 3.93 0.5537 WVFGRD96 5.0 260 40 -15 3.93 0.5711 WVFGRD96 6.0 265 45 0 3.92 0.5878 WVFGRD96 7.0 265 45 0 3.92 0.6011 WVFGRD96 8.0 265 50 5 3.92 0.6114 WVFGRD96 9.0 270 50 15 3.93 0.6232 WVFGRD96 10.0 270 45 15 3.95 0.6294 WVFGRD96 11.0 270 50 20 3.96 0.6370 WVFGRD96 12.0 270 50 20 3.96 0.6390 WVFGRD96 13.0 270 50 15 3.96 0.6421 WVFGRD96 14.0 270 50 15 3.96 0.6406 WVFGRD96 15.0 275 50 20 3.97 0.6391 WVFGRD96 16.0 275 50 20 3.97 0.6368 WVFGRD96 17.0 275 50 20 3.97 0.6323 WVFGRD96 18.0 275 50 20 3.98 0.6269 WVFGRD96 19.0 275 50 20 3.98 0.6223 WVFGRD96 20.0 275 50 20 4.00 0.6178 WVFGRD96 21.0 275 50 20 4.01 0.6116 WVFGRD96 22.0 275 50 20 4.01 0.6040 WVFGRD96 23.0 275 50 20 4.01 0.5957 WVFGRD96 24.0 275 50 15 4.01 0.5877 WVFGRD96 25.0 275 50 15 4.02 0.5795 WVFGRD96 26.0 275 50 15 4.02 0.5714 WVFGRD96 27.0 275 50 10 4.02 0.5633 WVFGRD96 28.0 290 50 20 4.04 0.5562 WVFGRD96 29.0 290 50 20 4.04 0.5494
The best solution is
WVFGRD96 13.0 270 50 15 3.96 0.6421
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The CUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Tue Feb 24 12:22:18 CST 2009