2009/01/30 13:25:04 47.8040 -122.5420 35.0 4.60 Washington
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2009/01/30 13:25:04:0 47.80 -122.54 35.0 4.6 Washington Stations used: BK.HUMO CN.HNB CN.HOPB CN.LLLB CN.PGC CN.PNT CN.SNB CN.VGZ IU.COR LI.LTH US.BMO US.HAWA US.NLWA UW.BRAN UW.IZEE UW.KENT UW.LEBA UW.LON UW.LTY UW.OFR UW.OMAK UW.OPC UW.PASS UW.WISH UW.YACT Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 7.59e+22 dyne-cm Mw = 4.52 Z = 55 km Plane Strike Dip Rake NP1 218 80 -165 NP2 125 75 -10 Principal Axes: Axis Value Plunge Azimuth T 7.59e+22 4 351 N 0.00e+00 72 249 P -7.59e+22 18 82 Moment Tensor: (dyne-cm) Component Value Mxx 7.22e+22 Mxy -2.16e+22 Mxz 1.75e+21 Myy -6.56e+22 Myz -2.24e+22 Mzz -6.59e+21 ## T ######### ###### ############# ##########################-- ########################------ ########################---------- --#####################------------- ----###################--------------- -------###############------------------ ---------############--------------- - -----------#########----------------- P -- --------------#####------------------ -- ----------------#------------------------- ----------------##------------------------ --------------######-------------------- ------------###########----------------- ----------###############------------- --------#####################------- ------############################ ---########################### --########################## ###################### ############## Global CMT Convention Moment Tensor: R T P -6.59e+21 1.75e+21 2.24e+22 1.75e+21 7.22e+22 2.16e+22 2.24e+22 2.16e+22 -6.56e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090130132504/index.html |
STK = 125 DIP = 75 RAKE = -10 MW = 4.52 HS = 55.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2009/01/30 13:25:04:0 47.80 -122.54 35.0 4.6 Washington Stations used: BK.HUMO CN.HNB CN.HOPB CN.LLLB CN.PGC CN.PNT CN.SNB CN.VGZ IU.COR LI.LTH US.BMO US.HAWA US.NLWA UW.BRAN UW.IZEE UW.KENT UW.LEBA UW.LON UW.LTY UW.OFR UW.OMAK UW.OPC UW.PASS UW.WISH UW.YACT Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 7.59e+22 dyne-cm Mw = 4.52 Z = 55 km Plane Strike Dip Rake NP1 218 80 -165 NP2 125 75 -10 Principal Axes: Axis Value Plunge Azimuth T 7.59e+22 4 351 N 0.00e+00 72 249 P -7.59e+22 18 82 Moment Tensor: (dyne-cm) Component Value Mxx 7.22e+22 Mxy -2.16e+22 Mxz 1.75e+21 Myy -6.56e+22 Myz -2.24e+22 Mzz -6.59e+21 ## T ######### ###### ############# ##########################-- ########################------ ########################---------- --#####################------------- ----###################--------------- -------###############------------------ ---------############--------------- - -----------#########----------------- P -- --------------#####------------------ -- ----------------#------------------------- ----------------##------------------------ --------------######-------------------- ------------###########----------------- ----------###############------------- --------#####################------- ------############################ ---########################### --########################## ###################### ############## Global CMT Convention Moment Tensor: R T P -6.59e+21 1.75e+21 2.24e+22 1.75e+21 7.22e+22 2.16e+22 2.24e+22 2.16e+22 -6.56e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090130132504/index.html |
|
20090130 13:24 8.0 km NE of Poulsbo, WA Lat=47.78550, Lon=-122.56833, Depth=62.7, Md=4.5 Moment magnitude 4.5 Scalar moment 6.90939 * 1022 dyn-cm Percent double couple 97.0% Percent CLVD 3.0% Moment tensor elements (* 1022 dyn-cm) Mxx: 6.71259 Mxy: -1.3965 Mxz: -0.25936 Mxy: -1.3965 Myy: -6.4187 Myz: -1.5988 Mxz: -0.25936 Myz: -1.5988 Mzz: -0.29381 Fault Option 1 Fault Option 2 Strike(deg) 128.0 220.0 Dip(deg) 81.0 80.0 Rake(deg) -10.0 -171.0 Velocity Model: P Velocity (km/s) Top of Layer (km) 5.40 0.0 6.38 4.0 6.59 9.0 6.73 16.0 6.86 20.0 6.95 25.0 7.80 41.0 Shear wave velocities are calculated from the Pwave velocities using a Vp/Vs ratio of 1.78. http://spike.ess.washington.edu/SEIS/EQ_Special/WEBDIR_09013013245p/MT.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 40 80 -10 3.68 0.1774 WVFGRD96 1.0 40 90 0 3.70 0.1934 WVFGRD96 2.0 40 90 0 3.81 0.2479 WVFGRD96 3.0 40 90 0 3.85 0.2697 WVFGRD96 4.0 130 90 -20 3.90 0.2869 WVFGRD96 5.0 310 85 20 3.94 0.3022 WVFGRD96 6.0 130 85 -20 3.96 0.3176 WVFGRD96 7.0 310 90 15 3.98 0.3323 WVFGRD96 8.0 310 90 20 4.02 0.3467 WVFGRD96 9.0 310 90 20 4.04 0.3565 WVFGRD96 10.0 310 90 15 4.05 0.3644 WVFGRD96 11.0 310 90 15 4.07 0.3717 WVFGRD96 12.0 130 85 -15 4.09 0.3795 WVFGRD96 13.0 310 90 15 4.10 0.3871 WVFGRD96 14.0 130 85 -15 4.11 0.3957 WVFGRD96 15.0 130 85 -15 4.13 0.4037 WVFGRD96 16.0 130 85 -10 4.14 0.4120 WVFGRD96 17.0 130 85 -10 4.15 0.4202 WVFGRD96 18.0 130 85 -10 4.16 0.4290 WVFGRD96 19.0 130 85 -10 4.17 0.4375 WVFGRD96 20.0 130 85 -10 4.18 0.4456 WVFGRD96 21.0 130 85 -10 4.20 0.4537 WVFGRD96 22.0 130 85 -10 4.21 0.4614 WVFGRD96 23.0 130 85 -10 4.22 0.4685 WVFGRD96 24.0 130 85 -5 4.23 0.4758 WVFGRD96 25.0 130 85 -5 4.24 0.4829 WVFGRD96 26.0 130 85 -5 4.25 0.4897 WVFGRD96 27.0 130 85 -5 4.26 0.4960 WVFGRD96 28.0 130 85 -5 4.26 0.5018 WVFGRD96 29.0 130 85 -5 4.27 0.5070 WVFGRD96 30.0 130 85 -5 4.28 0.5119 WVFGRD96 31.0 130 85 -5 4.29 0.5169 WVFGRD96 32.0 130 85 -5 4.30 0.5214 WVFGRD96 33.0 130 85 -5 4.31 0.5257 WVFGRD96 34.0 130 80 -5 4.32 0.5298 WVFGRD96 35.0 130 80 -5 4.34 0.5340 WVFGRD96 36.0 130 80 -5 4.35 0.5382 WVFGRD96 37.0 130 80 -5 4.36 0.5426 WVFGRD96 38.0 130 85 -5 4.38 0.5473 WVFGRD96 39.0 130 85 -5 4.39 0.5536 WVFGRD96 40.0 125 75 -10 4.42 0.5606 WVFGRD96 41.0 125 75 -10 4.43 0.5644 WVFGRD96 42.0 125 75 -10 4.44 0.5670 WVFGRD96 43.0 125 75 -10 4.45 0.5691 WVFGRD96 44.0 125 75 -10 4.46 0.5712 WVFGRD96 45.0 125 75 -10 4.47 0.5728 WVFGRD96 46.0 125 75 -10 4.47 0.5739 WVFGRD96 47.0 125 75 -10 4.48 0.5747 WVFGRD96 48.0 125 75 -10 4.49 0.5761 WVFGRD96 49.0 125 75 -10 4.49 0.5772 WVFGRD96 50.0 125 75 -10 4.50 0.5779 WVFGRD96 51.0 125 75 -10 4.50 0.5780 WVFGRD96 52.0 125 75 -10 4.51 0.5788 WVFGRD96 53.0 125 75 -10 4.51 0.5792 WVFGRD96 54.0 125 75 -10 4.52 0.5790 WVFGRD96 55.0 125 75 -10 4.52 0.5797 WVFGRD96 56.0 125 75 -10 4.53 0.5795 WVFGRD96 57.0 125 75 -10 4.53 0.5787 WVFGRD96 58.0 125 75 -10 4.53 0.5789 WVFGRD96 59.0 125 75 -10 4.54 0.5782 WVFGRD96 60.0 125 75 -10 4.54 0.5776 WVFGRD96 61.0 125 75 -10 4.54 0.5771 WVFGRD96 62.0 125 75 -10 4.55 0.5762 WVFGRD96 63.0 125 75 -10 4.55 0.5756 WVFGRD96 64.0 125 75 -10 4.55 0.5740 WVFGRD96 65.0 125 75 -10 4.55 0.5734 WVFGRD96 66.0 125 75 -15 4.55 0.5720 WVFGRD96 67.0 125 75 -15 4.56 0.5718 WVFGRD96 68.0 125 75 -15 4.56 0.5703 WVFGRD96 69.0 125 75 -15 4.56 0.5689
The best solution is
WVFGRD96 55.0 125 75 -10 4.52 0.5797
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Mon Feb 2 11:40:50 CST 2009