2009/01/02 14:17:13 58.5260 -152.2540 60.0 5.20 Alaska
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2009/01/02 14:17:13:0 58.53 -152.25 60.0 5.2 Alaska Stations used: AK.CAST AK.PPLA AK.RAG AK.SWD AT.OHAK AT.PMR II.KDAK Filtering commands used: hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 7.41e+23 dyne-cm Mw = 5.18 Z = 62 km Plane Strike Dip Rake NP1 235 80 35 NP2 138 56 168 Principal Axes: Axis Value Plunge Azimuth T 7.41e+23 31 102 N 0.00e+00 54 249 P -7.41e+23 16 2 Moment Tensor: (dyne-cm) Component Value Mxx -6.60e+23 Mxy -1.36e+23 Mxz -2.67e+23 Myy 5.14e+23 Myz 3.16e+23 Mzz 1.45e+23 ------ ----- ---------- P --------- ------------- ------------ #----------------------------- ###------------------------------- ####--------------------------###### #####-----------------------########## #######------------------############### #######---------------################## #########------------##################### ##########--------######################## ###########----################## ###### ############-#################### T ###### ##########---################### ##### ########------########################## #####----------####################### ##--------------#################### ------------------################ --------------------########## ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T F 1.45e+23 -2.67e+23 -3.16e+23 -2.67e+23 -6.60e+23 1.36e+23 -3.16e+23 1.36e+23 5.14e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090102141713/index.html |
STK = 235 DIP = 80 RAKE = 35 MW = 5.18 HS = 62.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2009/01/02 14:17:13:0 58.53 -152.25 60.0 5.2 Alaska Stations used: AK.CAST AK.PPLA AK.RAG AK.SWD AT.OHAK AT.PMR II.KDAK Filtering commands used: hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 7.41e+23 dyne-cm Mw = 5.18 Z = 62 km Plane Strike Dip Rake NP1 235 80 35 NP2 138 56 168 Principal Axes: Axis Value Plunge Azimuth T 7.41e+23 31 102 N 0.00e+00 54 249 P -7.41e+23 16 2 Moment Tensor: (dyne-cm) Component Value Mxx -6.60e+23 Mxy -1.36e+23 Mxz -2.67e+23 Myy 5.14e+23 Myz 3.16e+23 Mzz 1.45e+23 ------ ----- ---------- P --------- ------------- ------------ #----------------------------- ###------------------------------- ####--------------------------###### #####-----------------------########## #######------------------############### #######---------------################## #########------------##################### ##########--------######################## ###########----################## ###### ############-#################### T ###### ##########---################### ##### ########------########################## #####----------####################### ##--------------#################### ------------------################ --------------------########## ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T F 1.45e+23 -2.67e+23 -3.16e+23 -2.67e+23 -6.60e+23 1.36e+23 -3.16e+23 1.36e+23 5.14e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090102141713/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 40 50 -70 4.64 0.2158 WVFGRD96 1.0 35 45 -85 4.58 0.2043 WVFGRD96 2.0 35 45 -80 4.74 0.3029 WVFGRD96 3.0 205 45 -95 4.76 0.2949 WVFGRD96 4.0 255 90 20 4.57 0.2925 WVFGRD96 5.0 255 90 20 4.60 0.3138 WVFGRD96 6.0 75 90 -15 4.63 0.3313 WVFGRD96 7.0 75 90 -15 4.65 0.3485 WVFGRD96 8.0 75 90 -20 4.69 0.3698 WVFGRD96 9.0 75 90 -15 4.71 0.3874 WVFGRD96 10.0 75 90 -15 4.72 0.4008 WVFGRD96 11.0 75 90 -15 4.73 0.4110 WVFGRD96 12.0 75 85 -10 4.74 0.4192 WVFGRD96 13.0 75 85 -10 4.75 0.4253 WVFGRD96 14.0 75 85 -15 4.74 0.4306 WVFGRD96 15.0 75 80 -10 4.75 0.4345 WVFGRD96 16.0 75 80 -10 4.76 0.4384 WVFGRD96 17.0 75 70 -35 4.71 0.4379 WVFGRD96 18.0 75 70 -35 4.72 0.4507 WVFGRD96 19.0 75 70 -35 4.73 0.4630 WVFGRD96 20.0 75 70 -35 4.74 0.4738 WVFGRD96 21.0 30 70 -50 4.81 0.4847 WVFGRD96 22.0 30 70 -50 4.82 0.5012 WVFGRD96 23.0 30 70 -50 4.83 0.5171 WVFGRD96 24.0 30 75 -55 4.87 0.5325 WVFGRD96 25.0 30 75 -55 4.88 0.5472 WVFGRD96 26.0 30 70 -50 4.86 0.5610 WVFGRD96 27.0 30 75 -55 4.89 0.5744 WVFGRD96 28.0 30 75 -55 4.90 0.5867 WVFGRD96 29.0 35 75 -50 4.89 0.5988 WVFGRD96 30.0 35 75 -50 4.90 0.6107 WVFGRD96 31.0 35 75 -50 4.90 0.6219 WVFGRD96 32.0 35 75 -50 4.91 0.6325 WVFGRD96 33.0 35 75 -50 4.92 0.6422 WVFGRD96 34.0 35 75 -50 4.93 0.6516 WVFGRD96 35.0 35 75 -45 4.92 0.6604 WVFGRD96 36.0 35 75 -45 4.93 0.6687 WVFGRD96 37.0 35 75 -45 4.94 0.6763 WVFGRD96 38.0 35 75 -45 4.94 0.6832 WVFGRD96 39.0 35 75 -45 4.95 0.6888 WVFGRD96 40.0 35 75 -60 5.08 0.6919 WVFGRD96 41.0 35 75 -55 5.07 0.6984 WVFGRD96 42.0 35 75 -55 5.08 0.7053 WVFGRD96 43.0 35 75 -55 5.09 0.7117 WVFGRD96 44.0 235 70 40 5.07 0.7172 WVFGRD96 45.0 235 70 40 5.07 0.7294 WVFGRD96 46.0 235 70 40 5.08 0.7408 WVFGRD96 47.0 235 75 35 5.09 0.7518 WVFGRD96 48.0 235 75 35 5.10 0.7626 WVFGRD96 49.0 235 75 35 5.11 0.7727 WVFGRD96 50.0 235 75 35 5.12 0.7814 WVFGRD96 51.0 235 75 35 5.12 0.7889 WVFGRD96 52.0 235 75 35 5.13 0.7963 WVFGRD96 53.0 235 75 40 5.13 0.8026 WVFGRD96 54.0 235 75 40 5.14 0.8075 WVFGRD96 55.0 235 75 40 5.14 0.8124 WVFGRD96 56.0 235 75 40 5.15 0.8158 WVFGRD96 57.0 235 75 40 5.15 0.8184 WVFGRD96 58.0 235 80 35 5.16 0.8220 WVFGRD96 59.0 235 80 35 5.17 0.8251 WVFGRD96 60.0 235 80 35 5.17 0.8280 WVFGRD96 61.0 235 80 35 5.18 0.8293 WVFGRD96 62.0 235 80 35 5.18 0.8303 WVFGRD96 63.0 235 80 35 5.19 0.8302 WVFGRD96 64.0 235 80 40 5.18 0.8301 WVFGRD96 65.0 235 80 40 5.19 0.8288 WVFGRD96 66.0 235 80 40 5.19 0.8274 WVFGRD96 67.0 235 85 35 5.20 0.8260 WVFGRD96 68.0 235 85 35 5.20 0.8250 WVFGRD96 69.0 235 85 35 5.21 0.8249
The best solution is
WVFGRD96 62.0 235 80 35 5.18 0.8303
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.05 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Tue Jan 6 10:50:48 MST 2009