2008/12/03 02:47:30 60.91 -138.11 5.0 4.30 Yukon, Canada
USGS Felt map for this earthquake
SLU Moment Tensor Solution 2008/12/03 02:47:30 60.91 -138.11 5.0 4.30 Yukon, Canada Best Fitting Double Couple Mo = 2.11e+22 dyne-cm Mw = 4.15 Z = 6 km Plane Strike Dip Rake NP1 125 60 109 NP2 270 35 60 Principal Axes: Axis Value Plunge Azimuth T 2.11e+22 69 75 N 0.00e+00 17 295 P -2.11e+22 13 201 Moment Tensor: (dyne-cm) Component Value Mxx -1.72e+22 Mxy -6.06e+21 Mxz 6.26e+21 Myy 4.43e+14 Myz 8.66e+21 Mzz 1.72e+22 -------------- ---------------------- ---------------------------- ------------------------------ --------##################-------- #-----########################------ ###-##############################---- ###--################################--- ##----################################-- #-------################# #############- #--------################ T #############- -----------############## ############## ------------############################## --------------########################## ----------------######################## ------------------#################### ---------------------############### --------------------------######## ------------------------------ ------ ------------------- --- P ---------------- ------------ Harvard Convention Moment Tensor: R T F 1.72e+22 6.26e+21 -8.66e+21 6.26e+21 -1.72e+22 6.06e+21 -8.66e+21 6.06e+21 4.43e+14 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20081203024730/index.html |
STK = 270 DIP = 35 RAKE = 60 MW = 4.15 HS = 6.0
The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution 2008/12/03 02:47:30 60.91 -138.11 5.0 4.30 Yukon, Canada Best Fitting Double Couple Mo = 2.11e+22 dyne-cm Mw = 4.15 Z = 6 km Plane Strike Dip Rake NP1 125 60 109 NP2 270 35 60 Principal Axes: Axis Value Plunge Azimuth T 2.11e+22 69 75 N 0.00e+00 17 295 P -2.11e+22 13 201 Moment Tensor: (dyne-cm) Component Value Mxx -1.72e+22 Mxy -6.06e+21 Mxz 6.26e+21 Myy 4.43e+14 Myz 8.66e+21 Mzz 1.72e+22 -------------- ---------------------- ---------------------------- ------------------------------ --------##################-------- #-----########################------ ###-##############################---- ###--################################--- ##----################################-- #-------################# #############- #--------################ T #############- -----------############## ############## ------------############################## --------------########################## ----------------######################## ------------------#################### ---------------------############### --------------------------######## ------------------------------ ------ ------------------- --- P ---------------- ------------ Harvard Convention Moment Tensor: R T F 1.72e+22 6.26e+21 -8.66e+21 6.26e+21 -1.72e+22 6.06e+21 -8.66e+21 6.06e+21 4.43e+14 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20081203024730/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 250 65 30 3.99 0.5117 WVFGRD96 1.0 245 70 30 3.98 0.5143 WVFGRD96 2.0 260 35 30 4.12 0.5355 WVFGRD96 3.0 260 45 35 4.08 0.5534 WVFGRD96 4.0 265 40 45 4.11 0.5663 WVFGRD96 5.0 270 35 55 4.15 0.5854 WVFGRD96 6.0 270 35 60 4.15 0.5960 WVFGRD96 7.0 260 40 50 4.11 0.5957 WVFGRD96 8.0 255 40 45 4.10 0.5914 WVFGRD96 9.0 245 45 35 4.08 0.5840 WVFGRD96 10.0 245 45 35 4.10 0.5844 WVFGRD96 11.0 245 45 30 4.09 0.5776 WVFGRD96 12.0 240 50 25 4.09 0.5708 WVFGRD96 13.0 240 50 20 4.09 0.5640 WVFGRD96 14.0 240 50 20 4.10 0.5586 WVFGRD96 15.0 240 50 20 4.10 0.5517 WVFGRD96 16.0 240 50 20 4.11 0.5434 WVFGRD96 17.0 235 55 15 4.12 0.5358 WVFGRD96 18.0 235 55 15 4.12 0.5266 WVFGRD96 19.0 235 55 15 4.13 0.5178 WVFGRD96 20.0 240 50 15 4.15 0.5081 WVFGRD96 21.0 240 50 15 4.16 0.4966 WVFGRD96 22.0 240 50 15 4.17 0.4855 WVFGRD96 23.0 240 50 15 4.18 0.4733 WVFGRD96 24.0 240 45 15 4.19 0.4607 WVFGRD96 25.0 240 45 15 4.20 0.4476 WVFGRD96 26.0 240 40 10 4.21 0.4355 WVFGRD96 27.0 240 35 10 4.22 0.4234 WVFGRD96 28.0 240 35 10 4.22 0.4122 WVFGRD96 29.0 240 30 10 4.23 0.4008 WVFGRD96 30.0 235 30 5 4.24 0.3898 WVFGRD96 31.0 235 30 5 4.25 0.3785 WVFGRD96 32.0 235 30 5 4.25 0.3670 WVFGRD96 33.0 235 30 5 4.26 0.3552 WVFGRD96 34.0 235 30 5 4.26 0.3440 WVFGRD96 35.0 235 30 5 4.27 0.3324 WVFGRD96 36.0 245 40 0 4.25 0.3220 WVFGRD96 37.0 245 40 0 4.25 0.3131 WVFGRD96 38.0 245 40 0 4.26 0.3057 WVFGRD96 39.0 245 45 -5 4.27 0.3000
The best solution is
WVFGRD96 6.0 270 35 60 4.15 0.5960
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The CUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Wed Dec 3 06:07:52 CST 2008