2008/11/15 14:23:34 66.3420 -156.6280 14.0 4.60 Alaska
USGS Felt map for this earthquake
SLU Moment Tensor Solution 2008/11/15 14:23:34 66.3420 -156.6280 14.0 4.60 Alaska Best Fitting Double Couple Mo = 1.04e+23 dyne-cm Mw = 4.61 Z = 17 km Plane Strike Dip Rake NP1 350 85 -20 NP2 82 70 -175 Principal Axes: Axis Value Plunge Azimuth T 1.04e+23 10 37 N 0.00e+00 69 157 P -1.04e+23 18 304 Moment Tensor: (dyne-cm) Component Value Mxx 3.33e+22 Mxy 9.21e+22 Mxz -2.29e+21 Myy -2.72e+22 Myz 3.58e+22 Mzz -6.15e+21 ----########## --------############ ------------########### T ## -------------########### ### - ------------################## -- P ------------################### --- -------------################### --------------------#################### --------------------#################### ----------------------###################- ----------------------#################--- ----------------------##############------ -----------------------########----------- ####------------------#----------------- ######################------------------ ######################---------------- #####################--------------- ####################-------------- ##################------------ #################----------- ###############------- ###########--- Harvard Convention Moment Tensor: R T F -6.15e+21 -2.29e+21 -3.58e+22 -2.29e+21 3.33e+22 -9.21e+22 -3.58e+22 -9.21e+22 -2.72e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20081115142334/index.html |
STK = 350 DIP = 85 RAKE = -20 MW = 4.61 HS = 17.0
The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution 2008/11/15 14:23:34 66.3420 -156.6280 14.0 4.60 Alaska Best Fitting Double Couple Mo = 1.04e+23 dyne-cm Mw = 4.61 Z = 17 km Plane Strike Dip Rake NP1 350 85 -20 NP2 82 70 -175 Principal Axes: Axis Value Plunge Azimuth T 1.04e+23 10 37 N 0.00e+00 69 157 P -1.04e+23 18 304 Moment Tensor: (dyne-cm) Component Value Mxx 3.33e+22 Mxy 9.21e+22 Mxz -2.29e+21 Myy -2.72e+22 Myz 3.58e+22 Mzz -6.15e+21 ----########## --------############ ------------########### T ## -------------########### ### - ------------################## -- P ------------################### --- -------------################### --------------------#################### --------------------#################### ----------------------###################- ----------------------#################--- ----------------------##############------ -----------------------########----------- ####------------------#----------------- ######################------------------ ######################---------------- #####################--------------- ####################-------------- ##################------------ #################----------- ###############------- ###########--- Harvard Convention Moment Tensor: R T F -6.15e+21 -2.29e+21 -3.58e+22 -2.29e+21 3.33e+22 -9.21e+22 -3.58e+22 -9.21e+22 -2.72e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20081115142334/index.html |
Moment tensor inversion summary for event 2008/11/15 14:23 This is a fully automatic solution. It has not yet been reviewed by a seismologist.2008/11/15 14:23 Date 2008/11/15 Region: North-central Region of Alaska Mw=4.7 Centroid Location: Time 14:23; Lat. 66.29N; Lon. 203.09W; Depth 20 km Best Double Couple: Plane 1: strike = 155; dip = 58; rake = -42 Plane 2: strike = 270; dip = 56; rake = -140 Moment Tensor: Mo = 1.23456e+23 dyn-cm Mxx = 835.143; Mxy = 967.439; Mxz = 107.083 Myy = -52.712; Myz = -262.199; Mzz = -782.432 Principal Axes: T: value = 84.000; azimuth = 213; plunge = 1 N: value = 80.000; azimuth = 121; plunge = 51 P: value = 78.000; azimuth = 304; plunge = 39 |
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 165 65 -25 4.29 0.4312 WVFGRD96 1.0 165 70 -30 4.32 0.4472 WVFGRD96 2.0 165 70 -30 4.39 0.5197 WVFGRD96 3.0 165 70 -30 4.42 0.5430 WVFGRD96 4.0 165 75 -30 4.43 0.5624 WVFGRD96 5.0 170 85 -25 4.44 0.5851 WVFGRD96 6.0 170 85 -25 4.46 0.6080 WVFGRD96 7.0 170 85 -20 4.48 0.6307 WVFGRD96 8.0 170 85 -25 4.51 0.6524 WVFGRD96 9.0 170 85 -25 4.53 0.6688 WVFGRD96 10.0 170 85 -20 4.54 0.6818 WVFGRD96 11.0 170 85 -20 4.55 0.6910 WVFGRD96 12.0 350 90 20 4.56 0.6939 WVFGRD96 13.0 350 90 20 4.57 0.6934 WVFGRD96 14.0 350 80 -20 4.58 0.6932 WVFGRD96 15.0 350 80 -20 4.59 0.6991 WVFGRD96 16.0 350 80 -20 4.60 0.7026 WVFGRD96 17.0 350 85 -20 4.61 0.7045 WVFGRD96 18.0 170 90 20 4.61 0.7026 WVFGRD96 19.0 170 90 15 4.63 0.7013 WVFGRD96 20.0 170 90 15 4.64 0.7001 WVFGRD96 21.0 170 90 15 4.64 0.6965 WVFGRD96 22.0 350 90 -15 4.65 0.6916 WVFGRD96 23.0 350 90 -15 4.66 0.6850 WVFGRD96 24.0 170 85 15 4.66 0.6774 WVFGRD96 25.0 350 90 -15 4.67 0.6677 WVFGRD96 26.0 350 90 -15 4.68 0.6577 WVFGRD96 27.0 170 85 10 4.69 0.6481 WVFGRD96 28.0 350 90 -10 4.69 0.6369 WVFGRD96 29.0 170 85 10 4.70 0.6255
The best solution is
WVFGRD96 17.0 350 85 -20 4.61 0.7045
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Sat Nov 15 12:26:36 CST 2008