Location

2008/11/04 15:46:34 66.4630 -157.9640 5.0 4.00 Alaska

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 SLU Moment Tensor Solution
 2008/11/04 15:46:34  66.4630  -157.9640  5.0  4.00 Alaska
 
 Best Fitting Double Couple
    Mo = 2.11e+22 dyne-cm
    Mw = 4.15 
    Z  = 10 km
     Plane   Strike  Dip  Rake
      NP1      345    80    30
      NP2      249    61   168
 Principal Axes:
   Axis    Value   Plunge  Azimuth
     T   2.11e+22     28     211
     N   0.00e+00     59       2
     P  -2.11e+22     13     114



 Moment Tensor: (dyne-cm)
    Component  Value
       Mxx     8.77e+21
       Mxy     1.47e+22
       Mxz    -5.64e+21
       Myy    -1.24e+22
       Myz    -8.77e+21
       Mzz     3.61e+21
                                                     
                                                     
                                                     
                                                     
                     --############                  
                 -------###############              
              -----------#################           
             -------------#################          
           ----------------##################        
          -----------------###################       
         -------------------##---------------##      
        ----------------#####-------------------     
        ------------#########-------------------     
       ----------#############-------------------    
       --------###############-------------------    
       ------##################------------------    
       ----####################------------------    
        --######################----------------     
        -#######################-----------   --     
         #######################----------- P -      
          #########   ###########----------          
           ######## T ###########------------        
             ######   ###########----------          
              ###################---------           
                 ################------              
                     ############--                  
                                                     
                                                     
                                                     

 Harvard Convention
 Moment Tensor:
      R          T          F
  3.61e+21  -5.64e+21   8.77e+21 
 -5.64e+21   8.77e+21  -1.47e+22 
  8.77e+21  -1.47e+22  -1.24e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20081104154634/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 345
      DIP = 80
     RAKE = 30
       MW = 4.15
       HS = 10.0

The waveform inversion is preferred. The WUS model is used since it provides a better fit, especially to the PnL and surfwave-wave at the same station at some stations. Obviously no one model fits alld ata well.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 SLU Moment Tensor Solution
 2008/11/04 15:46:34  66.4630  -157.9640  5.0  4.00 Alaska
 
 Best Fitting Double Couple
    Mo = 2.11e+22 dyne-cm
    Mw = 4.15 
    Z  = 10 km
     Plane   Strike  Dip  Rake
      NP1      345    80    30
      NP2      249    61   168
 Principal Axes:
   Axis    Value   Plunge  Azimuth
     T   2.11e+22     28     211
     N   0.00e+00     59       2
     P  -2.11e+22     13     114



 Moment Tensor: (dyne-cm)
    Component  Value
       Mxx     8.77e+21
       Mxy     1.47e+22
       Mxz    -5.64e+21
       Myy    -1.24e+22
       Myz    -8.77e+21
       Mzz     3.61e+21
                                                     
                                                     
                                                     
                                                     
                     --############                  
                 -------###############              
              -----------#################           
             -------------#################          
           ----------------##################        
          -----------------###################       
         -------------------##---------------##      
        ----------------#####-------------------     
        ------------#########-------------------     
       ----------#############-------------------    
       --------###############-------------------    
       ------##################------------------    
       ----####################------------------    
        --######################----------------     
        -#######################-----------   --     
         #######################----------- P -      
          #########   ###########----------          
           ######## T ###########------------        
             ######   ###########----------          
              ###################---------           
                 ################------              
                     ############--                  
                                                     
                                                     
                                                     

 Harvard Convention
 Moment Tensor:
      R          T          F
  3.61e+21  -5.64e+21   8.77e+21 
 -5.64e+21   8.77e+21  -1.47e+22 
  8.77e+21  -1.47e+22  -1.24e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20081104154634/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.08 n 3
br c 0.12 0.25 n 4 p 2
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   155    65   -40   4.00 0.6103
WVFGRD96    1.0   150    60   -45   4.03 0.6127
WVFGRD96    2.0   150    60   -45   4.09 0.6686
WVFGRD96    3.0   150    65   -50   4.11 0.6713
WVFGRD96    4.0   160    90   -45   4.08 0.6955
WVFGRD96    5.0   160    90   -40   4.07 0.7209
WVFGRD96    6.0   345    80    35   4.08 0.7437
WVFGRD96    7.0   345    80    35   4.10 0.7565
WVFGRD96    8.0   350    75    40   4.14 0.7662
WVFGRD96    9.0   345    85    30   4.13 0.7727
WVFGRD96   10.0   345    80    30   4.15 0.7759
WVFGRD96   11.0   345    85    25   4.15 0.7751
WVFGRD96   12.0   345    85    25   4.16 0.7713
WVFGRD96   13.0   345    85    25   4.17 0.7665
WVFGRD96   14.0   160    90   -25   4.17 0.7585
WVFGRD96   15.0   160    85   -20   4.18 0.7521
WVFGRD96   16.0   160    85   -20   4.19 0.7454
WVFGRD96   17.0   160    85   -20   4.20 0.7376
WVFGRD96   18.0   345    75    20   4.22 0.7377
WVFGRD96   19.0   345    80    20   4.23 0.7286
WVFGRD96   20.0   345    80    20   4.23 0.7171
WVFGRD96   21.0   345    80    20   4.24 0.7034
WVFGRD96   22.0   345    80    20   4.25 0.6885
WVFGRD96   23.0   345    80    20   4.26 0.6719
WVFGRD96   24.0   160    90   -20   4.26 0.6520
WVFGRD96   25.0   160    90   -20   4.27 0.6341
WVFGRD96   26.0   160    90   -20   4.27 0.6156
WVFGRD96   27.0   340    90    20   4.28 0.5972
WVFGRD96   28.0   340    90    20   4.29 0.5784
WVFGRD96   29.0   340    90    20   4.29 0.5595
WVFGRD96   30.0   340    90    20   4.30 0.5416
WVFGRD96   31.0   160    85   -20   4.31 0.5249
WVFGRD96   32.0   160    85   -20   4.31 0.5093
WVFGRD96   33.0   340    90    20   4.32 0.4946
WVFGRD96   34.0   160    90   -20   4.33 0.4818
WVFGRD96   35.0    70    75   -15   4.34 0.4740
WVFGRD96   36.0    70    75   -15   4.35 0.4735
WVFGRD96   37.0    70    75   -15   4.37 0.4731
WVFGRD96   38.0    70    75   -15   4.39 0.4720
WVFGRD96   39.0    70    75   -15   4.41 0.4695
WVFGRD96   40.0    70    70   -20   4.45 0.4565
WVFGRD96   41.0    70    70   -20   4.46 0.4504
WVFGRD96   42.0    70    70   -20   4.47 0.4431
WVFGRD96   43.0    70    70   -20   4.48 0.4353
WVFGRD96   44.0    70    70   -20   4.49 0.4272
WVFGRD96   45.0    70    75   -20   4.49 0.4192
WVFGRD96   46.0    70    75   -20   4.50 0.4109
WVFGRD96   47.0    70    75   -20   4.51 0.4023
WVFGRD96   48.0    70    75   -20   4.52 0.3935
WVFGRD96   49.0    70    75   -15   4.52 0.3844
WVFGRD96   50.0    70    75   -15   4.53 0.3761

The best solution is

WVFGRD96   10.0   345    80    30   4.15 0.7759

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.08 n 3
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Wed Nov 5 11:50:07 CST 2008

Last Changed 2008/11/04