2008/11/04 15:46:34 66.4630 -157.9640 5.0 4.00 Alaska
USGS Felt map for this earthquake
SLU Moment Tensor Solution 2008/11/04 15:46:34 66.4630 -157.9640 5.0 4.00 Alaska Best Fitting Double Couple Mo = 2.11e+22 dyne-cm Mw = 4.15 Z = 10 km Plane Strike Dip Rake NP1 345 80 30 NP2 249 61 168 Principal Axes: Axis Value Plunge Azimuth T 2.11e+22 28 211 N 0.00e+00 59 2 P -2.11e+22 13 114 Moment Tensor: (dyne-cm) Component Value Mxx 8.77e+21 Mxy 1.47e+22 Mxz -5.64e+21 Myy -1.24e+22 Myz -8.77e+21 Mzz 3.61e+21 --############ -------############### -----------################# -------------################# ----------------################## -----------------################### -------------------##---------------## ----------------#####------------------- ------------#########------------------- ----------#############------------------- --------###############------------------- ------##################------------------ ----####################------------------ --######################---------------- -#######################----------- -- #######################----------- P - ######### ###########---------- ######## T ###########------------ ###### ###########---------- ###################--------- ################------ ############-- Harvard Convention Moment Tensor: R T F 3.61e+21 -5.64e+21 8.77e+21 -5.64e+21 8.77e+21 -1.47e+22 8.77e+21 -1.47e+22 -1.24e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20081104154634/index.html |
STK = 345 DIP = 80 RAKE = 30 MW = 4.15 HS = 10.0
The waveform inversion is preferred. The WUS model is used since it provides a better fit, especially to the PnL and surfwave-wave at the same station at some stations. Obviously no one model fits alld ata well.
The following compares this source inversion to others
SLU Moment Tensor Solution 2008/11/04 15:46:34 66.4630 -157.9640 5.0 4.00 Alaska Best Fitting Double Couple Mo = 2.11e+22 dyne-cm Mw = 4.15 Z = 10 km Plane Strike Dip Rake NP1 345 80 30 NP2 249 61 168 Principal Axes: Axis Value Plunge Azimuth T 2.11e+22 28 211 N 0.00e+00 59 2 P -2.11e+22 13 114 Moment Tensor: (dyne-cm) Component Value Mxx 8.77e+21 Mxy 1.47e+22 Mxz -5.64e+21 Myy -1.24e+22 Myz -8.77e+21 Mzz 3.61e+21 --############ -------############### -----------################# -------------################# ----------------################## -----------------################### -------------------##---------------## ----------------#####------------------- ------------#########------------------- ----------#############------------------- --------###############------------------- ------##################------------------ ----####################------------------ --######################---------------- -#######################----------- -- #######################----------- P - ######### ###########---------- ######## T ###########------------ ###### ###########---------- ###################--------- ################------ ############-- Harvard Convention Moment Tensor: R T F 3.61e+21 -5.64e+21 8.77e+21 -5.64e+21 8.77e+21 -1.47e+22 8.77e+21 -1.47e+22 -1.24e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20081104154634/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 155 65 -40 4.00 0.6103 WVFGRD96 1.0 150 60 -45 4.03 0.6127 WVFGRD96 2.0 150 60 -45 4.09 0.6686 WVFGRD96 3.0 150 65 -50 4.11 0.6713 WVFGRD96 4.0 160 90 -45 4.08 0.6955 WVFGRD96 5.0 160 90 -40 4.07 0.7209 WVFGRD96 6.0 345 80 35 4.08 0.7437 WVFGRD96 7.0 345 80 35 4.10 0.7565 WVFGRD96 8.0 350 75 40 4.14 0.7662 WVFGRD96 9.0 345 85 30 4.13 0.7727 WVFGRD96 10.0 345 80 30 4.15 0.7759 WVFGRD96 11.0 345 85 25 4.15 0.7751 WVFGRD96 12.0 345 85 25 4.16 0.7713 WVFGRD96 13.0 345 85 25 4.17 0.7665 WVFGRD96 14.0 160 90 -25 4.17 0.7585 WVFGRD96 15.0 160 85 -20 4.18 0.7521 WVFGRD96 16.0 160 85 -20 4.19 0.7454 WVFGRD96 17.0 160 85 -20 4.20 0.7376 WVFGRD96 18.0 345 75 20 4.22 0.7377 WVFGRD96 19.0 345 80 20 4.23 0.7286 WVFGRD96 20.0 345 80 20 4.23 0.7171 WVFGRD96 21.0 345 80 20 4.24 0.7034 WVFGRD96 22.0 345 80 20 4.25 0.6885 WVFGRD96 23.0 345 80 20 4.26 0.6719 WVFGRD96 24.0 160 90 -20 4.26 0.6520 WVFGRD96 25.0 160 90 -20 4.27 0.6341 WVFGRD96 26.0 160 90 -20 4.27 0.6156 WVFGRD96 27.0 340 90 20 4.28 0.5972 WVFGRD96 28.0 340 90 20 4.29 0.5784 WVFGRD96 29.0 340 90 20 4.29 0.5595 WVFGRD96 30.0 340 90 20 4.30 0.5416 WVFGRD96 31.0 160 85 -20 4.31 0.5249 WVFGRD96 32.0 160 85 -20 4.31 0.5093 WVFGRD96 33.0 340 90 20 4.32 0.4946 WVFGRD96 34.0 160 90 -20 4.33 0.4818 WVFGRD96 35.0 70 75 -15 4.34 0.4740 WVFGRD96 36.0 70 75 -15 4.35 0.4735 WVFGRD96 37.0 70 75 -15 4.37 0.4731 WVFGRD96 38.0 70 75 -15 4.39 0.4720 WVFGRD96 39.0 70 75 -15 4.41 0.4695 WVFGRD96 40.0 70 70 -20 4.45 0.4565 WVFGRD96 41.0 70 70 -20 4.46 0.4504 WVFGRD96 42.0 70 70 -20 4.47 0.4431 WVFGRD96 43.0 70 70 -20 4.48 0.4353 WVFGRD96 44.0 70 70 -20 4.49 0.4272 WVFGRD96 45.0 70 75 -20 4.49 0.4192 WVFGRD96 46.0 70 75 -20 4.50 0.4109 WVFGRD96 47.0 70 75 -20 4.51 0.4023 WVFGRD96 48.0 70 75 -20 4.52 0.3935 WVFGRD96 49.0 70 75 -15 4.52 0.3844 WVFGRD96 50.0 70 75 -15 4.53 0.3761
The best solution is
WVFGRD96 10.0 345 80 30 4.15 0.7759
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Wed Nov 5 11:50:07 CST 2008