2008/10/28 14:30:12 66.3810 -157.7640 5.0 4.70 Alaska
USGS Felt map for this earthquake
SLU Moment Tensor Solution 2008/10/28 14:30:12 66.3810 -157.7640 5.0 4.70 Alaska Best Fitting Double Couple Mo = 1.46e+23 dyne-cm Mw = 4.71 Z = 16 km Plane Strike Dip Rake NP1 345 75 -25 NP2 82 66 -164 Principal Axes: Axis Value Plunge Azimuth T 1.46e+23 6 35 N 0.00e+00 61 136 P -1.46e+23 28 302 Moment Tensor: (dyne-cm) Component Value Mxx 6.61e+22 Mxy 1.19e+23 Mxz -1.93e+22 Myy -3.52e+22 Myz 6.06e+22 Mzz -3.09e+22 --############ --------############# ------------############ T # --------------########### ## -----------------################# ---- ------------################# ----- P ------------################## ------ -------------################## -----------------------################# ------------------------#################- -------------------------###############-- -------------------------############----- --------------------------########-------- ###----------------------###------------ ############-----########--------------- #########################------------- ########################------------ #######################----------- #####################--------- ####################-------- #################----- #############- Harvard Convention Moment Tensor: R T F -3.09e+22 -1.93e+22 -6.06e+22 -1.93e+22 6.61e+22 -1.19e+23 -6.06e+22 -1.19e+23 -3.52e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20081028143012/index.html |
STK = 345 DIP = 75 RAKE = -25 MW = 4.71 HS = 16.0
The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution 2008/10/28 14:30:12 66.3810 -157.7640 5.0 4.70 Alaska Best Fitting Double Couple Mo = 1.46e+23 dyne-cm Mw = 4.71 Z = 16 km Plane Strike Dip Rake NP1 345 75 -25 NP2 82 66 -164 Principal Axes: Axis Value Plunge Azimuth T 1.46e+23 6 35 N 0.00e+00 61 136 P -1.46e+23 28 302 Moment Tensor: (dyne-cm) Component Value Mxx 6.61e+22 Mxy 1.19e+23 Mxz -1.93e+22 Myy -3.52e+22 Myz 6.06e+22 Mzz -3.09e+22 --############ --------############# ------------############ T # --------------########### ## -----------------################# ---- ------------################# ----- P ------------################## ------ -------------################## -----------------------################# ------------------------#################- -------------------------###############-- -------------------------############----- --------------------------########-------- ###----------------------###------------ ############-----########--------------- #########################------------- ########################------------ #######################----------- #####################--------- ####################-------- #################----- #############- Harvard Convention Moment Tensor: R T F -3.09e+22 -1.93e+22 -6.06e+22 -1.93e+22 6.61e+22 -1.19e+23 -6.06e+22 -1.19e+23 -3.52e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20081028143012/index.html |
![]() |
Moment tensor inversion summary for event 2008/10/28 14:30 Date: 2008/10/28 Time: 14:30 (UTC) Region: North-central Region of Alaska Mw=4.8 Location: Lat. 66.4123; Lon. -157.7271; Depth 5 km (Best-fitting depth from moment tensor inversion) Solution quality: good; Number of stations = 8 Best Double Couple: strike dip rake Plane 1: 265.5 74.1 -135.6 Plane 2: 160.6 47.7 -21.7 Moment Tensor Parameters: Mo = 1.96293e+23 dyn-cm Mxx = 0.99; Mxy = 1.30; Mxz = 1.11 Myy = -0.24; Myz = -0.37; Mzz = -0.75 Principal Axes: value azimuth plunge T: 2.03 27.33 16.42 N: -0.14 281.13 43.42 P: -1.89 132.71 41.99 |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 160 70 -40 4.65 0.5142 WVFGRD96 1.0 160 70 -40 4.65 0.5199 WVFGRD96 2.0 165 70 -30 4.63 0.5243 WVFGRD96 3.0 330 35 -40 4.75 0.5301 WVFGRD96 4.0 335 45 -40 4.71 0.5318 WVFGRD96 5.0 335 65 -45 4.68 0.5493 WVFGRD96 6.0 335 65 -40 4.67 0.5640 WVFGRD96 7.0 335 65 -40 4.67 0.5749 WVFGRD96 8.0 340 65 -35 4.67 0.5845 WVFGRD96 9.0 340 65 -35 4.67 0.5922 WVFGRD96 10.0 340 65 -35 4.69 0.6004 WVFGRD96 11.0 340 65 -35 4.69 0.6071 WVFGRD96 12.0 340 65 -30 4.69 0.6111 WVFGRD96 13.0 340 70 -30 4.69 0.6152 WVFGRD96 14.0 345 70 -25 4.70 0.6175 WVFGRD96 15.0 345 75 -25 4.70 0.6190 WVFGRD96 16.0 345 75 -25 4.71 0.6200 WVFGRD96 17.0 345 75 -25 4.71 0.6193 WVFGRD96 18.0 345 75 -25 4.72 0.6175 WVFGRD96 19.0 345 75 -20 4.73 0.6150 WVFGRD96 20.0 345 75 -25 4.74 0.6130 WVFGRD96 21.0 345 75 -25 4.75 0.6094 WVFGRD96 22.0 345 75 -25 4.75 0.6049 WVFGRD96 23.0 345 75 -20 4.76 0.6004 WVFGRD96 24.0 345 75 -20 4.77 0.5954 WVFGRD96 25.0 345 75 -20 4.77 0.5896 WVFGRD96 26.0 345 75 -20 4.78 0.5832 WVFGRD96 27.0 345 75 -20 4.78 0.5762 WVFGRD96 28.0 345 80 -20 4.79 0.5694 WVFGRD96 29.0 345 80 -20 4.80 0.5622 WVFGRD96 30.0 345 80 -20 4.80 0.5546 WVFGRD96 31.0 170 85 20 4.81 0.5449 WVFGRD96 32.0 170 85 20 4.82 0.5379 WVFGRD96 33.0 170 85 15 4.84 0.5315 WVFGRD96 34.0 170 85 15 4.85 0.5254 WVFGRD96 35.0 170 85 15 4.86 0.5192 WVFGRD96 36.0 345 85 -15 4.86 0.5116 WVFGRD96 37.0 170 85 15 4.88 0.5057 WVFGRD96 38.0 350 85 -10 4.90 0.4966 WVFGRD96 39.0 170 85 15 4.91 0.4888 WVFGRD96 40.0 170 80 20 4.94 0.4797 WVFGRD96 41.0 170 80 20 4.95 0.4746 WVFGRD96 42.0 170 80 20 4.96 0.4687 WVFGRD96 43.0 170 80 20 4.96 0.4623 WVFGRD96 44.0 170 80 20 4.97 0.4553 WVFGRD96 45.0 170 80 20 4.98 0.4481 WVFGRD96 46.0 170 80 20 4.98 0.4405 WVFGRD96 47.0 170 80 15 4.99 0.4330 WVFGRD96 48.0 170 80 15 5.00 0.4254 WVFGRD96 49.0 170 80 15 5.00 0.4175 WVFGRD96 50.0 170 80 15 5.01 0.4093
The best solution is
WVFGRD96 16.0 345 75 -25 4.71 0.6200
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.05 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The CUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Mon Nov 3 17:53:06 CST 2008