2008/10/18 02:27:38 36.1450 -114.5810 10.0 3.30 Arizona
USGS Felt map for this earthquake
SLU Moment Tensor Solution 2008/10/18 02:27:38 36.1450 -114.5810 10.0 3.30 Arizona Best Fitting Double Couple Mo = 1.64e+21 dyne-cm Mw = 3.41 Z = 7 km Plane Strike Dip Rake NP1 205 81 150 NP2 300 60 10 Principal Axes: Axis Value Plunge Azimuth T 1.64e+21 27 158 N 0.00e+00 59 11 P -1.64e+21 14 256 Moment Tensor: (dyne-cm) Component Value Mxx 1.03e+21 Mxy -8.06e+20 Mxz -5.27e+20 Myy -1.27e+21 Myz 6.28e+20 Mzz 2.47e+20 ############## ###################--- ####################-------- ####################---------- #####################------------- -------------########--------------- -------------------##----------------- ---------------------###---------------- --------------------#######------------- --------------------##########------------ -------------------#############---------- ------------------################-------- -- ------------###################------ - P ------------####################---- - -----------######################--- -------------#######################-- -----------######################### ----------########### ########## -------############ T ######## ------############ ####### --#################### ############## Harvard Convention Moment Tensor: R T F 2.47e+20 -5.27e+20 -6.28e+20 -5.27e+20 1.03e+21 8.06e+20 -6.28e+20 8.06e+20 -1.27e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20081018022738/index.html |
STK = 300 DIP = 60 RAKE = 10 MW = 3.41 HS = 7.0
The waveform inversion is preferred. This is a marginal solution. The depth, moment magnitude and pressure and tension axes are fairly robust, but the nodal plane dips can vary.
The following compares this source inversion to others
SLU Moment Tensor Solution 2008/10/18 02:27:38 36.1450 -114.5810 10.0 3.30 Arizona Best Fitting Double Couple Mo = 1.64e+21 dyne-cm Mw = 3.41 Z = 7 km Plane Strike Dip Rake NP1 205 81 150 NP2 300 60 10 Principal Axes: Axis Value Plunge Azimuth T 1.64e+21 27 158 N 0.00e+00 59 11 P -1.64e+21 14 256 Moment Tensor: (dyne-cm) Component Value Mxx 1.03e+21 Mxy -8.06e+20 Mxz -5.27e+20 Myy -1.27e+21 Myz 6.28e+20 Mzz 2.47e+20 ############## ###################--- ####################-------- ####################---------- #####################------------- -------------########--------------- -------------------##----------------- ---------------------###---------------- --------------------#######------------- --------------------##########------------ -------------------#############---------- ------------------################-------- -- ------------###################------ - P ------------####################---- - -----------######################--- -------------#######################-- -----------######################### ----------########### ########## -------############ T ######## ------############ ####### --#################### ############## Harvard Convention Moment Tensor: R T F 2.47e+20 -5.27e+20 -6.28e+20 -5.27e+20 1.03e+21 8.06e+20 -6.28e+20 8.06e+20 -1.27e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20081018022738/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2 br c 0.12 0.25 n 4 p 2The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 295 75 -20 3.22 0.4412 WVFGRD96 1.0 295 75 -15 3.23 0.4639 WVFGRD96 2.0 295 75 -20 3.30 0.5279 WVFGRD96 3.0 295 70 -15 3.33 0.5445 WVFGRD96 4.0 295 70 -15 3.35 0.5508 WVFGRD96 5.0 300 60 10 3.39 0.5529 WVFGRD96 6.0 300 60 10 3.40 0.5553 WVFGRD96 7.0 300 60 10 3.41 0.5554 WVFGRD96 8.0 300 55 10 3.44 0.5548 WVFGRD96 9.0 300 60 10 3.44 0.5512 WVFGRD96 10.0 300 60 10 3.45 0.5473 WVFGRD96 11.0 300 60 10 3.46 0.5426 WVFGRD96 12.0 300 60 10 3.47 0.5371 WVFGRD96 13.0 295 65 -10 3.47 0.5316 WVFGRD96 14.0 300 75 25 3.48 0.5261 WVFGRD96 15.0 300 75 25 3.48 0.5260 WVFGRD96 16.0 300 75 20 3.49 0.5249 WVFGRD96 17.0 300 75 20 3.50 0.5241 WVFGRD96 18.0 300 75 20 3.51 0.5222 WVFGRD96 19.0 300 75 20 3.52 0.5193 WVFGRD96 20.0 300 75 20 3.52 0.5156 WVFGRD96 21.0 300 75 20 3.53 0.5118 WVFGRD96 22.0 300 75 20 3.54 0.5074 WVFGRD96 23.0 300 75 20 3.55 0.5022 WVFGRD96 24.0 300 75 15 3.55 0.4965 WVFGRD96 25.0 300 75 15 3.56 0.4907 WVFGRD96 26.0 295 90 20 3.57 0.4848 WVFGRD96 27.0 295 90 20 3.57 0.4789 WVFGRD96 28.0 295 90 20 3.58 0.4729 WVFGRD96 29.0 295 90 20 3.59 0.4668 WVFGRD96 30.0 295 90 20 3.60 0.4606 WVFGRD96 31.0 295 90 20 3.60 0.4540 WVFGRD96 32.0 115 85 -20 3.61 0.4476 WVFGRD96 33.0 295 90 20 3.62 0.4405 WVFGRD96 34.0 115 85 -15 3.63 0.4340 WVFGRD96 35.0 115 85 -15 3.64 0.4266 WVFGRD96 36.0 295 90 15 3.65 0.4192 WVFGRD96 37.0 295 90 15 3.67 0.4118 WVFGRD96 38.0 295 90 15 3.68 0.4036 WVFGRD96 39.0 300 80 15 3.69 0.3953 WVFGRD96 40.0 300 75 20 3.72 0.3853 WVFGRD96 41.0 300 75 20 3.73 0.3789 WVFGRD96 42.0 300 75 20 3.74 0.3724 WVFGRD96 43.0 300 75 20 3.74 0.3665 WVFGRD96 44.0 300 75 20 3.75 0.3607 WVFGRD96 45.0 300 75 20 3.76 0.3549 WVFGRD96 46.0 300 75 20 3.76 0.3491 WVFGRD96 47.0 300 75 15 3.77 0.3433 WVFGRD96 48.0 300 75 15 3.77 0.3377 WVFGRD96 49.0 300 75 15 3.78 0.3322 WVFGRD96 50.0 300 75 15 3.78 0.3268
The best solution is
WVFGRD96 7.0 300 60 10 3.41 0.5554
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3 br c 0.12 0.25 n 4 p 2 br c 0.12 0.25 n 4 p 2
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Sat Oct 18 09:36:54 CDT 2008