2008/10/08 09:53:01 60.6990 -143.6240 8.0 5.20 Alaska
USGS Felt map for this earthquake
SLU Moment Tensor Solution 2008/10/08 09:53:01 60.6990 -143.6240 8.0 5.20 Alaska Best Fitting Double Couple Mo = 7.67e+23 dyne-cm Mw = 5.19 Z = 17 km Plane Strike Dip Rake NP1 299 66 -97 NP2 135 25 -75 Principal Axes: Axis Value Plunge Azimuth T 7.67e+23 21 34 N 0.00e+00 6 301 P -7.67e+23 68 195 Moment Tensor: (dyne-cm) Component Value Mxx 3.68e+23 Mxy 2.84e+23 Mxz 4.64e+23 Myy 2.00e+23 Myz 2.10e+23 Mzz -5.68e+23 ############## ###################### ###################### ### ####################### T #### -######################## ###### -------############################# ##-------------####################### ##-------------------################### ##----------------------################ ###-------------------------############## ####---------------------------########### ####-----------------------------######### #####------------- --------------####### ####------------- P ---------------##### #####------------ -----------------### #####--------------------------------# ######------------------------------ #######--------------------------- #######----------------------- #########------------------# ##############---##### ############## Harvard Convention Moment Tensor: R T F -5.68e+23 4.64e+23 -2.10e+23 4.64e+23 3.68e+23 -2.84e+23 -2.10e+23 -2.84e+23 2.00e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20081008095301/index.html |
STK = 135 DIP = 25 RAKE = -75 MW = 5.19 HS = 17.0
The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution 2008/10/08 09:53:01 60.6990 -143.6240 8.0 5.20 Alaska Best Fitting Double Couple Mo = 7.67e+23 dyne-cm Mw = 5.19 Z = 17 km Plane Strike Dip Rake NP1 299 66 -97 NP2 135 25 -75 Principal Axes: Axis Value Plunge Azimuth T 7.67e+23 21 34 N 0.00e+00 6 301 P -7.67e+23 68 195 Moment Tensor: (dyne-cm) Component Value Mxx 3.68e+23 Mxy 2.84e+23 Mxz 4.64e+23 Myy 2.00e+23 Myz 2.10e+23 Mzz -5.68e+23 ############## ###################### ###################### ### ####################### T #### -######################## ###### -------############################# ##-------------####################### ##-------------------################### ##----------------------################ ###-------------------------############## ####---------------------------########### ####-----------------------------######### #####------------- --------------####### ####------------- P ---------------##### #####------------ -----------------### #####--------------------------------# ######------------------------------ #######--------------------------- #######----------------------- #########------------------# ##############---##### ############## Harvard Convention Moment Tensor: R T F -5.68e+23 4.64e+23 -2.10e+23 4.64e+23 3.68e+23 -2.84e+23 -2.10e+23 -2.84e+23 2.00e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20081008095301/index.html |
Moment tensor inversion summary for event 2008/10/08 09:53 Date: 2008/10/08 Time: 09:53 (UTC) Region: Cape Yakataga Region of Alaska Mw=5.0 Location: Lat. 60.6989; Lon. -143.7639; Depth 5 km (Best-fitting depth from moment tensor inversion) Solution quality: good; Number of stations = 8 Best Double Couple: strike dip rake Plane 1: 343.8 59.9 -37.3 Plane 2: 94.7 58.4 -144.0 Moment Tensor Parameters: Mo = 3.50196e+23 dyn-cm Mxx = 1.38; Mxy = 2.41; Mxz = -1.19 Myy = 0.39; Myz = 1.57; Mzz = -1.78 Principal Axes: value azimuth plunge T: 3.35 39.59 0.93 N: 0.30 130.47 43.54 P: -3.65 308.61 46.45 |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 170 25 -10 5.16 0.3079 WVFGRD96 1.0 170 25 -10 5.18 0.3162 WVFGRD96 2.0 170 35 -15 5.12 0.3302 WVFGRD96 3.0 170 20 -20 5.20 0.3473 WVFGRD96 4.0 170 20 -20 5.19 0.3820 WVFGRD96 5.0 165 20 -30 5.19 0.4185 WVFGRD96 6.0 155 20 -45 5.19 0.4528 WVFGRD96 7.0 145 20 -60 5.19 0.4852 WVFGRD96 8.0 145 25 -60 5.18 0.5117 WVFGRD96 9.0 140 25 -70 5.19 0.5388 WVFGRD96 10.0 135 25 -75 5.21 0.5633 WVFGRD96 11.0 135 25 -75 5.21 0.5772 WVFGRD96 12.0 135 25 -75 5.20 0.5887 WVFGRD96 13.0 135 25 -75 5.20 0.5990 WVFGRD96 14.0 135 25 -75 5.20 0.6014 WVFGRD96 15.0 135 25 -75 5.19 0.6020 WVFGRD96 16.0 130 25 -80 5.19 0.6031 WVFGRD96 17.0 135 25 -75 5.19 0.6034 WVFGRD96 18.0 130 25 -80 5.19 0.6024 WVFGRD96 19.0 130 25 -80 5.19 0.6007 WVFGRD96 20.0 130 25 -80 5.22 0.6011 WVFGRD96 21.0 130 25 -80 5.22 0.5974 WVFGRD96 22.0 130 20 -75 5.22 0.5946 WVFGRD96 23.0 125 20 -85 5.22 0.5915 WVFGRD96 24.0 125 20 -85 5.22 0.5885 WVFGRD96 25.0 125 20 -85 5.22 0.5856 WVFGRD96 26.0 300 70 -90 5.23 0.5817 WVFGRD96 27.0 300 70 -90 5.23 0.5775 WVFGRD96 28.0 300 70 -90 5.23 0.5728 WVFGRD96 29.0 300 70 -90 5.23 0.5683 WVFGRD96 30.0 115 20 -95 5.24 0.5633 WVFGRD96 31.0 300 70 -85 5.25 0.5574 WVFGRD96 32.0 300 70 -85 5.25 0.5525 WVFGRD96 33.0 300 70 -85 5.25 0.5465 WVFGRD96 34.0 300 70 -85 5.26 0.5404 WVFGRD96 35.0 295 75 -85 5.26 0.5347 WVFGRD96 36.0 295 75 -85 5.26 0.5288 WVFGRD96 37.0 295 75 -85 5.26 0.5228 WVFGRD96 38.0 295 75 -85 5.26 0.5165 WVFGRD96 39.0 295 75 -80 5.27 0.5112 WVFGRD96 40.0 300 75 -80 5.40 0.5159 WVFGRD96 41.0 300 75 -80 5.41 0.5138 WVFGRD96 42.0 300 75 -80 5.41 0.5115 WVFGRD96 43.0 300 75 -80 5.42 0.5084 WVFGRD96 44.0 300 75 -80 5.42 0.5049 WVFGRD96 45.0 300 75 -80 5.43 0.5011 WVFGRD96 46.0 300 75 -80 5.43 0.4966 WVFGRD96 47.0 300 75 -80 5.44 0.4922 WVFGRD96 48.0 295 80 -80 5.44 0.4874 WVFGRD96 49.0 295 80 -80 5.44 0.4831 WVFGRD96 50.0 295 80 -80 5.45 0.4785
The best solution is
WVFGRD96 17.0 135 25 -75 5.19 0.6034
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.05 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The CUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Wed Oct 8 18:17:08 CDT 2008