2008/09/24 12:19:52 63.411 -150.068 7.0 4.20 Alaska
USGS Felt map for this earthquake
SLU Moment Tensor Solution 2008/09/24 12:19:52 63.411 -150.068 7.0 4.20 Alaska Best Fitting Double Couple Mo = 1.97e+22 dyne-cm Mw = 4.13 Z = 9 km Plane Strike Dip Rake NP1 210 55 45 NP2 90 55 135 Principal Axes: Axis Value Plunge Azimuth T 1.97e+22 55 60 N 0.00e+00 35 240 P -1.97e+22 0 330 Moment Tensor: (dyne-cm) Component Value Mxx -1.32e+22 Mxy 1.14e+22 Mxz 4.54e+21 Myy 6.47e+19 Myz 8.13e+21 Mzz 1.31e+22 -------------- P -----------------### -- ------------########### ----------------############## ---------------################### ---------------##################### --------------######################## --------------############ ########### ------------############## T ########### ------------############### ############ ------------############################## #----------##############################- ###-------#############################--- ####-----###########################---- ################################-------- #######------############------------- ######------------------------------ #####----------------------------- ###--------------------------- ###------------------------- ---------------------- -------------- Harvard Convention Moment Tensor: R T F 1.31e+22 4.54e+21 -8.13e+21 4.54e+21 -1.32e+22 -1.14e+22 -8.13e+21 -1.14e+22 6.47e+19 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080924121952/index.html |
STK = 210 DIP = 55 RAKE = 45 MW = 4.13 HS = 9.0
The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution 2008/09/24 12:19:52 63.411 -150.068 7.0 4.20 Alaska Best Fitting Double Couple Mo = 1.97e+22 dyne-cm Mw = 4.13 Z = 9 km Plane Strike Dip Rake NP1 210 55 45 NP2 90 55 135 Principal Axes: Axis Value Plunge Azimuth T 1.97e+22 55 60 N 0.00e+00 35 240 P -1.97e+22 0 330 Moment Tensor: (dyne-cm) Component Value Mxx -1.32e+22 Mxy 1.14e+22 Mxz 4.54e+21 Myy 6.47e+19 Myz 8.13e+21 Mzz 1.31e+22 -------------- P -----------------### -- ------------########### ----------------############## ---------------################### ---------------##################### --------------######################## --------------############ ########### ------------############## T ########### ------------############### ############ ------------############################## #----------##############################- ###-------#############################--- ####-----###########################---- ################################-------- #######------############------------- ######------------------------------ #####----------------------------- ###--------------------------- ###------------------------- ---------------------- -------------- Harvard Convention Moment Tensor: R T F 1.31e+22 4.54e+21 -8.13e+21 4.54e+21 -1.32e+22 -1.14e+22 -8.13e+21 -1.14e+22 6.47e+19 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080924121952/index.html |
|
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 185 35 -15 4.02 0.4421 WVFGRD96 1.0 185 30 -15 4.07 0.4476 WVFGRD96 2.0 190 35 -15 4.07 0.4494 WVFGRD96 3.0 195 35 -10 4.08 0.4550 WVFGRD96 4.0 200 40 5 4.07 0.4714 WVFGRD96 5.0 205 50 25 4.08 0.5027 WVFGRD96 6.0 205 55 35 4.10 0.5451 WVFGRD96 7.0 205 55 35 4.11 0.5766 WVFGRD96 8.0 210 55 40 4.12 0.5908 WVFGRD96 9.0 210 55 45 4.13 0.5953 WVFGRD96 10.0 210 55 40 4.14 0.5938 WVFGRD96 11.0 210 55 35 4.13 0.5839 WVFGRD96 12.0 205 60 35 4.13 0.5710 WVFGRD96 13.0 205 60 35 4.12 0.5559 WVFGRD96 14.0 205 60 35 4.12 0.5384 WVFGRD96 15.0 205 60 30 4.11 0.5192 WVFGRD96 16.0 205 60 30 4.11 0.5017 WVFGRD96 17.0 205 60 30 4.11 0.4844 WVFGRD96 18.0 200 70 40 4.11 0.4736 WVFGRD96 19.0 200 70 40 4.11 0.4659 WVFGRD96 20.0 200 70 40 4.13 0.4552 WVFGRD96 21.0 200 70 40 4.13 0.4462 WVFGRD96 22.0 200 70 40 4.14 0.4363 WVFGRD96 23.0 200 75 40 4.14 0.4264 WVFGRD96 24.0 200 75 40 4.14 0.4169 WVFGRD96 25.0 200 75 40 4.14 0.4071 WVFGRD96 26.0 195 80 40 4.14 0.3971 WVFGRD96 27.0 195 80 40 4.14 0.3881 WVFGRD96 28.0 195 80 40 4.15 0.3788 WVFGRD96 29.0 195 80 35 4.15 0.3702 WVFGRD96 30.0 195 80 35 4.15 0.3616 WVFGRD96 31.0 195 85 35 4.16 0.3536 WVFGRD96 32.0 195 85 35 4.16 0.3459 WVFGRD96 33.0 195 85 35 4.17 0.3379 WVFGRD96 34.0 195 85 35 4.17 0.3300 WVFGRD96 35.0 15 90 -35 4.17 0.3185 WVFGRD96 36.0 10 90 -30 4.18 0.3117 WVFGRD96 37.0 195 85 30 4.19 0.3079 WVFGRD96 38.0 195 80 40 4.17 0.3016 WVFGRD96 39.0 195 80 40 4.17 0.2960 WVFGRD96 40.0 195 80 45 4.26 0.2890 WVFGRD96 41.0 95 60 -20 4.26 0.2889 WVFGRD96 42.0 95 60 -20 4.27 0.2876 WVFGRD96 43.0 95 60 -15 4.27 0.2863 WVFGRD96 44.0 95 60 -15 4.28 0.2847 WVFGRD96 45.0 95 60 -15 4.28 0.2834 WVFGRD96 46.0 95 65 -15 4.28 0.2819 WVFGRD96 47.0 95 65 -15 4.29 0.2811 WVFGRD96 48.0 95 65 -15 4.29 0.2803 WVFGRD96 49.0 95 65 -15 4.30 0.2786 WVFGRD96 50.0 95 65 -15 4.30 0.2783
The best solution is
WVFGRD96 9.0 210 55 45 4.13 0.5953
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.05 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The CUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Wed Sep 24 11:35:04 CDT 2008