2008/09/20 05:16:11 63.6010 -129.1570 10.0 5.20 NWT,CA
USGS Felt map for this earthquake
SLU Moment Tensor Solution 2008/09/20 05:16:11 63.6010 -129.1570 10.0 5.20 NWT,CA Best Fitting Double Couple Mo = 6.68e+23 dyne-cm Mw = 5.15 Z = 12 km Plane Strike Dip Rake NP1 250 75 20 NP2 155 71 164 Principal Axes: Axis Value Plunge Azimuth T 6.68e+23 25 113 N 0.00e+00 65 285 P -6.68e+23 3 22 Moment Tensor: (dyne-cm) Component Value Mxx -4.91e+23 Mxy -4.28e+23 Mxz -1.30e+23 Myy 3.77e+23 Myz 2.20e+23 Mzz 1.14e+23 ------------ P ##-------------- --- #####----------------------- ######------------------------ ########-------------------------- #########--------------------------- ###########--------------------------- ############-----------------########### #############---------################## ###############---######################## #############--########################### ##########------########################## #######----------######################### ###--------------################ #### #-----------------############### T #### ------------------############## ### ------------------################## -------------------############### ------------------############ -------------------######### ------------------#### -------------- Harvard Convention Moment Tensor: R T F 1.14e+23 -1.30e+23 -2.20e+23 -1.30e+23 -4.91e+23 4.28e+23 -2.20e+23 4.28e+23 3.77e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080920051611/index.html |
STK = 250 DIP = 75 RAKE = 20 MW = 5.15 HS = 12.0
The waveform inversion is preferred and agrees with the surface-wave solution. The waveform depth is slightly deeper than the surface-wave solution.
The following compares this source inversion to others
SLU Moment Tensor Solution 2008/09/20 05:16:11 63.6010 -129.1570 10.0 5.20 NWT,CA Best Fitting Double Couple Mo = 6.68e+23 dyne-cm Mw = 5.15 Z = 12 km Plane Strike Dip Rake NP1 250 75 20 NP2 155 71 164 Principal Axes: Axis Value Plunge Azimuth T 6.68e+23 25 113 N 0.00e+00 65 285 P -6.68e+23 3 22 Moment Tensor: (dyne-cm) Component Value Mxx -4.91e+23 Mxy -4.28e+23 Mxz -1.30e+23 Myy 3.77e+23 Myz 2.20e+23 Mzz 1.14e+23 ------------ P ##-------------- --- #####----------------------- ######------------------------ ########-------------------------- #########--------------------------- ###########--------------------------- ############-----------------########### #############---------################## ###############---######################## #############--########################### ##########------########################## #######----------######################### ###--------------################ #### #-----------------############### T #### ------------------############## ### ------------------################## -------------------############### ------------------############ -------------------######### ------------------#### -------------- Harvard Convention Moment Tensor: R T F 1.14e+23 -1.30e+23 -2.20e+23 -1.30e+23 -4.91e+23 4.28e+23 -2.20e+23 4.28e+23 3.77e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080920051611/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 65 80 -25 4.95 0.4615 WVFGRD96 1.0 65 80 -25 4.98 0.4757 WVFGRD96 2.0 60 70 -10 5.03 0.4859 WVFGRD96 3.0 60 80 20 5.07 0.4905 WVFGRD96 4.0 245 75 30 5.08 0.5024 WVFGRD96 5.0 245 75 25 5.09 0.5180 WVFGRD96 6.0 245 75 25 5.10 0.5303 WVFGRD96 7.0 250 70 25 5.09 0.5358 WVFGRD96 8.0 245 75 20 5.12 0.5514 WVFGRD96 9.0 250 75 20 5.11 0.5570 WVFGRD96 10.0 245 75 20 5.15 0.5709 WVFGRD96 11.0 250 75 20 5.14 0.5706 WVFGRD96 12.0 250 75 20 5.15 0.5724 WVFGRD96 13.0 250 75 15 5.16 0.5714 WVFGRD96 14.0 250 75 15 5.17 0.5656 WVFGRD96 15.0 250 75 15 5.18 0.5631 WVFGRD96 16.0 250 75 15 5.19 0.5538 WVFGRD96 17.0 250 75 15 5.20 0.5429 WVFGRD96 18.0 245 80 15 5.23 0.5349 WVFGRD96 19.0 245 80 15 5.24 0.5200 WVFGRD96 20.0 240 85 15 5.28 0.5053 WVFGRD96 21.0 245 80 15 5.26 0.4905 WVFGRD96 22.0 65 75 0 5.25 0.4760 WVFGRD96 23.0 60 75 -5 5.28 0.4612 WVFGRD96 24.0 60 75 -10 5.28 0.4468 WVFGRD96 25.0 60 75 -10 5.28 0.4320 WVFGRD96 26.0 60 75 -10 5.28 0.4208 WVFGRD96 27.0 60 75 -10 5.29 0.4096 WVFGRD96 28.0 60 75 -10 5.29 0.3988 WVFGRD96 29.0 60 75 -10 5.30 0.3886 WVFGRD96 30.0 60 75 -10 5.30 0.3787 WVFGRD96 31.0 330 80 10 5.32 0.3680 WVFGRD96 32.0 330 80 10 5.33 0.3614 WVFGRD96 33.0 330 80 10 5.34 0.3540 WVFGRD96 34.0 330 80 10 5.35 0.3462 WVFGRD96 35.0 330 80 10 5.36 0.3378 WVFGRD96 36.0 330 80 10 5.37 0.3295 WVFGRD96 37.0 60 75 -10 5.37 0.3229 WVFGRD96 38.0 60 80 -10 5.39 0.3168 WVFGRD96 39.0 60 80 -5 5.42 0.3107 WVFGRD96 40.0 60 75 -10 5.45 0.3041 WVFGRD96 41.0 60 75 -5 5.47 0.2998 WVFGRD96 42.0 60 80 -10 5.48 0.2948 WVFGRD96 43.0 60 80 5 5.50 0.2890 WVFGRD96 44.0 60 80 5 5.51 0.2828 WVFGRD96 45.0 60 80 5 5.52 0.2761 WVFGRD96 46.0 65 80 10 5.50 0.2690 WVFGRD96 47.0 65 80 10 5.51 0.2634 WVFGRD96 48.0 60 85 5 5.55 0.2576 WVFGRD96 49.0 60 85 5 5.56 0.2516 WVFGRD96 50.0 60 85 5 5.56 0.2454
The best solution is
WVFGRD96 12.0 250 75 20 5.15 0.5724
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
The following figure shows the stations used in the grid search for the best focal mechanism to fit the surface-wave spectral amplitudes of the Love and Rayleigh waves.
![]() |
|
The surface-wave determined focal mechanism is shown here.
NODAL PLANES STK= 249.99 DIP= 75.00 RAKE= 19.99 OR STK= 154.61 DIP= 70.72 RAKE= 164.08 DEPTH = 11.0 km Mw = 5.21 Best Fit 0.8420 - P-T axis plot gives solutions with FIT greater than FIT90
![]() |
The P-wave first motion data for focal mechanism studies are as follow:
Sta Az Dist First motion
Surface wave analysis was performed using codes from Computer Programs in Seismology, specifically the multiple filter analysis program do_mft and the surface-wave radiation pattern search program srfgrd96.
Digital data were collected, instrument response removed and traces converted
to Z, R an T components. Multiple filter analysis was applied to the Z and T traces to obtain the Rayleigh- and Love-wave spectral amplitudes, respectively.
These were input to the search program which examined all depths between 1 and 25 km
and all possible mechanisms.
![]() |
|
![]() |
Pressure-tension axis trends. Since the surface-wave spectra search does not distinguish between P and T axes and since there is a 180 ambiguity in strike, all possible P and T axes are plotted. First motion data and waveforms will be used to select the preferred mechanism. The purpose of this plot is to provide an idea of the possible range of solutions. The P and T-axes for all mechanisms with goodness of fit greater than 0.9 FITMAX (above) are plotted here. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the Love and Rayleigh wave radiation patterns. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. Because of the symmetry of the spectral amplitude rediation patterns, only strikes from 0-180 degrees are sampled. |
The distribution of broadband stations with azimuth and distance is
Listing of broadband stations used
Since the analysis of the surface-wave radiation patterns uses only spectral amplitudes and because the surfave-wave radiation patterns have a 180 degree symmetry, each surface-wave solution consists of four possible focal mechanisms corresponding to the interchange of the P- and T-axes and a roation of the mechanism by 180 degrees. To select one mechanism, P-wave first motion can be used. This was not possible in this case because all the P-wave first motions were emergent ( a feature of the P-wave wave takeoff angle, the station location and the mechanism). The other way to select among the mechanisms is to compute forward synthetics and compare the observed and predicted waveforms.
The fits to the waveforms with the given mechanism are show below:
![]() |
This figure shows the fit to the three components of motion (Z - vertical, R-radial and T - transverse). For each station and component, the observed traces is shown in red and the model predicted trace in blue. The traces represent filtered ground velocity in units of meters/sec (the peak value is printed adjacent to each trace; each pair of traces to plotted to the same scale to emphasize the difference in levels). Both synthetic and observed traces have been filtered using the SAC commands:
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
![]() |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The CUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Sat Sep 20 16:21:50 CDT 2008