Location

2008/08/30 22:06:15 41.6780 -111.1300 1.0 3.40 Utah

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 SLU Moment Tensor Solution
 2008/08/30 22:06:15  41.6780  -111.1300  1.0  3.40 Utah
 
 Best Fitting Double Couple
    Mo = 1.08e+21 dyne-cm
    Mw = 3.29 
    Z  = 10 km
     Plane   Strike  Dip  Rake
      NP1       10    60   -125
      NP2      245    45   -45
 Principal Axes:
   Axis    Value   Plunge  Azimuth
     T   1.08e+21      8     125
     N   0.00e+00     30      30
     P  -1.08e+21     59     229



 Moment Tensor: (dyne-cm)
    Component  Value
       Mxx     2.14e+20
       Mxy    -6.42e+20
       Mxz     2.29e+20
       Myy     5.52e+20
       Myz     4.91e+20
       Mzz    -7.66e+20
                                                     
                                                     
                                                     
                                                     
                     ###########---                  
                 #################-----              
              ####################--------           
             ######################--------          
           #################-------#####-----        
          #############-------------#########-       
         ###########----------------###########      
        #########-------------------############     
        #######---------------------############     
       #######----------------------#############    
       #####------------------------#############    
       ####-------------------------#############    
       ###-----------   -----------##############    
        ##----------- P -----------#############     
        #------------   ----------##############     
         -------------------------#########   #      
          -----------------------########## T        
           ---------------------###########          
             ------------------############          
              ---------------#############           
                 -----------###########              
                     -----#########                  
                                                     
                                                     
                                                     

 Harvard Convention
 Moment Tensor:
      R          T          F
 -7.66e+20   2.29e+20  -4.91e+20 
  2.29e+20   2.14e+20   6.42e+20 
 -4.91e+20   6.42e+20   5.52e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080830220615/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 245
      DIP = 45
     RAKE = -45
       MW = 3.29
       HS = 10.0

This is a marginal solution. The moment and depth are well determined. The very small number of observed transverse components precludes a definitive solution. To provide more weight to the few transverse components, the Z and R traces were weighted 0.3 while the T was weighted 1.0, addition to the usual distance weight.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 SLU Moment Tensor Solution
 2008/08/30 22:06:15  41.6780  -111.1300  1.0  3.40 Utah
 
 Best Fitting Double Couple
    Mo = 1.08e+21 dyne-cm
    Mw = 3.29 
    Z  = 10 km
     Plane   Strike  Dip  Rake
      NP1       10    60   -125
      NP2      245    45   -45
 Principal Axes:
   Axis    Value   Plunge  Azimuth
     T   1.08e+21      8     125
     N   0.00e+00     30      30
     P  -1.08e+21     59     229



 Moment Tensor: (dyne-cm)
    Component  Value
       Mxx     2.14e+20
       Mxy    -6.42e+20
       Mxz     2.29e+20
       Myy     5.52e+20
       Myz     4.91e+20
       Mzz    -7.66e+20
                                                     
                                                     
                                                     
                                                     
                     ###########---                  
                 #################-----              
              ####################--------           
             ######################--------          
           #################-------#####-----        
          #############-------------#########-       
         ###########----------------###########      
        #########-------------------############     
        #######---------------------############     
       #######----------------------#############    
       #####------------------------#############    
       ####-------------------------#############    
       ###-----------   -----------##############    
        ##----------- P -----------#############     
        #------------   ----------##############     
         -------------------------#########   #      
          -----------------------########## T        
           ---------------------###########          
             ------------------############          
              ---------------#############           
                 -----------###########              
                     -----#########                  
                                                     
                                                     
                                                     

 Harvard Convention
 Moment Tensor:
      R          T          F
 -7.66e+20   2.29e+20  -4.91e+20 
  2.29e+20   2.14e+20   6.42e+20 
 -4.91e+20   6.42e+20   5.52e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080830220615/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
br c 0.13 0.2 n 4 p 2
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    40    50   -90   2.87 0.1599
WVFGRD96    1.0   270    75    15   2.77 0.1482
WVFGRD96    2.0   200    45   -90   3.03 0.2297
WVFGRD96    3.0    90    60    20   3.03 0.2534
WVFGRD96    4.0   255    45   -25   3.11 0.2798
WVFGRD96    5.0   255    45   -25   3.15 0.3167
WVFGRD96    6.0   255    45   -25   3.18 0.3464
WVFGRD96    7.0   250    45   -35   3.21 0.3648
WVFGRD96    8.0   245    40   -45   3.28 0.3779
WVFGRD96    9.0   245    40   -45   3.29 0.3805
WVFGRD96   10.0   245    45   -45   3.29 0.3812
WVFGRD96   11.0   250    50   -35   3.28 0.3797
WVFGRD96   12.0   250    50   -35   3.29 0.3774
WVFGRD96   13.0   250    50   -35   3.30 0.3735
WVFGRD96   14.0   255    55   -30   3.30 0.3687
WVFGRD96   15.0   255    55   -30   3.31 0.3634
WVFGRD96   16.0   255    55   -30   3.32 0.3574
WVFGRD96   17.0   255    55   -30   3.32 0.3510
WVFGRD96   18.0   255    60   -30   3.32 0.3451
WVFGRD96   19.0   255    60   -30   3.33 0.3388
WVFGRD96   20.0   255    60   -30   3.34 0.3323
WVFGRD96   21.0   255    60   -30   3.35 0.3263
WVFGRD96   22.0   255    60   -35   3.36 0.3199
WVFGRD96   23.0   255    60   -35   3.36 0.3132
WVFGRD96   24.0   255    65   -35   3.36 0.3060
WVFGRD96   25.0   255    65   -35   3.36 0.2988
WVFGRD96   26.0   255    65   -35   3.37 0.2913
WVFGRD96   27.0    75    55    20   3.37 0.2840
WVFGRD96   28.0    75    55    20   3.38 0.2783
WVFGRD96   29.0    70    60    10   3.37 0.2737
WVFGRD96   30.0    70    60    10   3.37 0.2690
WVFGRD96   31.0    70    60     5   3.38 0.2640
WVFGRD96   32.0    70    60    10   3.39 0.2595
WVFGRD96   33.0    70    60    10   3.39 0.2553
WVFGRD96   34.0    70    60    10   3.40 0.2517
WVFGRD96   35.0    70    60    10   3.40 0.2490
WVFGRD96   36.0    70    60    15   3.41 0.2463
WVFGRD96   37.0    70    60    15   3.42 0.2449
WVFGRD96   38.0    70    60    20   3.44 0.2460
WVFGRD96   39.0    70    65    30   3.46 0.2484
WVFGRD96   40.0    85    50    50   3.55 0.2522
WVFGRD96   41.0    80    55    45   3.55 0.2556
WVFGRD96   42.0    80    55    45   3.56 0.2581
WVFGRD96   43.0    80    55    45   3.57 0.2598
WVFGRD96   44.0    80    55    45   3.58 0.2607
WVFGRD96   45.0    80    55    45   3.59 0.2619
WVFGRD96   46.0    80    55    45   3.60 0.2621
WVFGRD96   47.0    80    55    45   3.60 0.2622
WVFGRD96   48.0    80    55    50   3.62 0.2614
WVFGRD96   49.0   185    45    65   3.64 0.2604
WVFGRD96   50.0   185    45    65   3.65 0.2610

The best solution is

WVFGRD96   10.0   245    45   -45   3.29 0.3812

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
br c 0.13 0.2 n 4 p 2
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Tue Sep 2 08:45:23 CDT 2008

Last Changed 2008/08/30