2008/07/31 05:02:43 48.154 -122.747 55.9 4 PNW
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2008/07/31 05:02:43:1 48.15 -122.75 55.9 4.0 PNW Stations used: TA.B06A XU.BS11 XU.C04A XU.E010 XU.N060 XU.PL11 XU.W020 XU.W030 XU.W040 YW.FACA Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 7.24e+21 dyne-cm Mw = 3.84 Z = 62 km Plane Strike Dip Rake NP1 350 85 -70 NP2 93 21 -166 Principal Axes: Axis Value Plunge Azimuth T 7.24e+21 37 62 N 0.00e+00 20 168 P -7.24e+21 46 280 Moment Tensor: (dyne-cm) Component Value Mxx 8.80e+20 Mxy 2.52e+21 Mxz 9.51e+20 Myy 3.02e+20 Myz 6.64e+21 Mzz -1.18e+21 ----########## --------############## ------------################ -------------################# ----------------################## -----------------################### -------------------########## ###### --------------------########## T ####### -------- ---------########## ####### --------- P ----------#################### --------- ----------#################### #---------------------#################### #----------------------##################- #---------------------################## ##--------------------#################- ##--------------------##############-- ###------------------#############-- ####----------------###########--- #####-------------########---- ########---------####------- ###############------- ###########--- Global CMT Convention Moment Tensor: R T P -1.18e+21 9.51e+20 -6.64e+21 9.51e+20 8.80e+20 -2.52e+21 -6.64e+21 -2.52e+21 3.02e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080731050243/index.html |
STK = 350 DIP = 85 RAKE = -70 MW = 3.84 HS = 62.0
The NDK file is 20080731050243.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2008/07/31 05:02:43:1 48.15 -122.75 55.9 4.0 PNW Stations used: TA.B06A XU.BS11 XU.C04A XU.E010 XU.N060 XU.PL11 XU.W020 XU.W030 XU.W040 YW.FACA Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 7.24e+21 dyne-cm Mw = 3.84 Z = 62 km Plane Strike Dip Rake NP1 350 85 -70 NP2 93 21 -166 Principal Axes: Axis Value Plunge Azimuth T 7.24e+21 37 62 N 0.00e+00 20 168 P -7.24e+21 46 280 Moment Tensor: (dyne-cm) Component Value Mxx 8.80e+20 Mxy 2.52e+21 Mxz 9.51e+20 Myy 3.02e+20 Myz 6.64e+21 Mzz -1.18e+21 ----########## --------############## ------------################ -------------################# ----------------################## -----------------################### -------------------########## ###### --------------------########## T ####### -------- ---------########## ####### --------- P ----------#################### --------- ----------#################### #---------------------#################### #----------------------##################- #---------------------################## ##--------------------#################- ##--------------------##############-- ###------------------#############-- ####----------------###########--- #####-------------########---- ########---------####------- ###############------- ###########--- Global CMT Convention Moment Tensor: R T P -1.18e+21 9.51e+20 -6.64e+21 9.51e+20 8.80e+20 -2.52e+21 -6.64e+21 -2.52e+21 3.02e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080731050243/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 10 45 -60 3.25 0.3335 WVFGRD96 4.0 220 75 -30 3.31 0.3921 WVFGRD96 6.0 210 65 -30 3.35 0.4410 WVFGRD96 8.0 210 65 -35 3.42 0.4763 WVFGRD96 10.0 215 60 40 3.42 0.4935 WVFGRD96 12.0 215 65 40 3.45 0.5181 WVFGRD96 14.0 215 65 40 3.47 0.5350 WVFGRD96 16.0 210 70 35 3.47 0.5453 WVFGRD96 18.0 210 70 40 3.49 0.5535 WVFGRD96 20.0 215 70 40 3.51 0.5598 WVFGRD96 22.0 215 70 45 3.53 0.5667 WVFGRD96 24.0 215 70 45 3.54 0.5730 WVFGRD96 26.0 215 70 45 3.54 0.5785 WVFGRD96 28.0 5 80 -35 3.55 0.5807 WVFGRD96 30.0 0 80 -35 3.57 0.5843 WVFGRD96 32.0 0 80 -40 3.58 0.5883 WVFGRD96 34.0 0 80 -40 3.59 0.5969 WVFGRD96 36.0 -5 80 -40 3.61 0.6044 WVFGRD96 38.0 -5 80 -40 3.62 0.6144 WVFGRD96 40.0 -5 80 -55 3.72 0.6267 WVFGRD96 42.0 355 80 -55 3.73 0.6316 WVFGRD96 44.0 355 80 -55 3.74 0.6355 WVFGRD96 46.0 355 80 -55 3.75 0.6384 WVFGRD96 48.0 350 80 -55 3.77 0.6416 WVFGRD96 50.0 350 80 -60 3.78 0.6443 WVFGRD96 52.0 350 80 -60 3.79 0.6456 WVFGRD96 54.0 355 85 -60 3.79 0.6468 WVFGRD96 56.0 355 85 -60 3.80 0.6483 WVFGRD96 58.0 350 85 -65 3.82 0.6484 WVFGRD96 60.0 350 85 -70 3.83 0.6489 WVFGRD96 62.0 350 85 -70 3.84 0.6492 WVFGRD96 64.0 350 85 -75 3.85 0.6488 WVFGRD96 66.0 350 85 -80 3.86 0.6471 WVFGRD96 68.0 200 5 -60 3.89 0.6417 WVFGRD96 70.0 200 5 -60 3.89 0.6411 WVFGRD96 72.0 210 5 -50 3.90 0.6394 WVFGRD96 74.0 210 5 -50 3.90 0.6363 WVFGRD96 76.0 220 10 -35 3.92 0.6333 WVFGRD96 78.0 225 10 -30 3.92 0.6297 WVFGRD96 80.0 235 15 -20 3.94 0.6266 WVFGRD96 82.0 235 15 -20 3.94 0.6211 WVFGRD96 84.0 240 20 -15 3.96 0.6182 WVFGRD96 86.0 240 20 -15 3.97 0.6126 WVFGRD96 88.0 240 25 -15 3.98 0.6080 WVFGRD96 90.0 240 25 -15 3.99 0.6029 WVFGRD96 92.0 245 30 -10 4.01 0.5972 WVFGRD96 94.0 240 30 -15 4.01 0.5921 WVFGRD96 96.0 245 35 -10 4.04 0.5874 WVFGRD96 98.0 245 35 -10 4.04 0.5816
The best solution is
WVFGRD96 62.0 350 85 -70 3.84 0.6492
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: