Location

2008/07/29 18:42:15 33.9590 -117.7520 12.0 5.40 California

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 SLU Moment Tensor Solution
 2008/07/29 18:42:15  33.9590  -117.7520  12.0  5.40 California
 
 Best Fitting Double Couple
    Mo = 1.29e+24 dyne-cm
    Mw = 5.34 
    Z  = 17 km
     Plane   Strike  Dip  Rake
      NP1      289    58   138
      NP2       45    55    40
 Principal Axes:
   Axis    Value   Plunge  Azimuth
     T   1.29e+24     51     255
     N   0.00e+00     39      79
     P  -1.29e+24      2     348



 Moment Tensor: (dyne-cm)
    Component  Value
       Mxx    -1.20e+24
       Mxy     3.89e+23
       Mxz    -2.00e+23
       Myy     4.19e+23
       Myz    -6.01e+23
       Mzz     7.78e+23
                                                     
                                                     
                                                     
                                                     
                     - P ----------                  
                 -----   --------------              
              ----------------------------           
             ------------------------------          
           --------------------------------##        
          ---------------------------------###       
         --#################---------------####      
        #########################---------######     
        #############################----#######     
       #################################-########    
       #################################--#######    
       ##########   ###################-----#####    
       ########## T #################--------####    
        #########   ################-----------#     
        ##########################-------------#     
         #######################---------------      
          ####################----------------       
           ################------------------        
             #########---------------------          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     

 Harvard Convention
 Moment Tensor:
      R          T          F
  7.78e+23  -2.00e+23   6.01e+23 
 -2.00e+23  -1.20e+24  -3.89e+23 
  6.01e+23  -3.89e+23   4.19e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080729184215/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 45
      DIP = 55
     RAKE = 40
       MW = 5.34
       HS = 17.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMT
SCAL
 SLU Moment Tensor Solution
 2008/07/29 18:42:15  33.9590  -117.7520  12.0  5.40 California
 
 Best Fitting Double Couple
    Mo = 1.29e+24 dyne-cm
    Mw = 5.34 
    Z  = 17 km
     Plane   Strike  Dip  Rake
      NP1      289    58   138
      NP2       45    55    40
 Principal Axes:
   Axis    Value   Plunge  Azimuth
     T   1.29e+24     51     255
     N   0.00e+00     39      79
     P  -1.29e+24      2     348



 Moment Tensor: (dyne-cm)
    Component  Value
       Mxx    -1.20e+24
       Mxy     3.89e+23
       Mxz    -2.00e+23
       Myy     4.19e+23
       Myz    -6.01e+23
       Mzz     7.78e+23
                                                     
                                                     
                                                     
                                                     
                     - P ----------                  
                 -----   --------------              
              ----------------------------           
             ------------------------------          
           --------------------------------##        
          ---------------------------------###       
         --#################---------------####      
        #########################---------######     
        #############################----#######     
       #################################-########    
       #################################--#######    
       ##########   ###################-----#####    
       ########## T #################--------####    
        #########   ################-----------#     
        ##########################-------------#     
         #######################---------------      
          ####################----------------       
           ################------------------        
             #########---------------------          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     

 Harvard Convention
 Moment Tensor:
      R          T          F
  7.78e+23  -2.00e+23   6.01e+23 
 -2.00e+23  -1.20e+24  -3.89e+23 
  6.01e+23  -3.89e+23   4.19e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080729184215/index.html
	
USGS Centroid Moment Tensor Solution

 08/07/29 18:42:15.07
 GREATER LOS ANGELES AREA, CALIF.
 Epicenter:  33.733 -117.940
 MW 5.4

 USGS CENTROID MOMENT TENSOR
 08/07/29 18:42:46.50
 Centroid:   34.645 -117.325
 Depth  22         No. of sta:110
 Moment Tensor;   Scale 10**17 Nm
   Mrr= 1.02       Mtt=-1.45
   Mpp= 0.43       Mrt=-0.76
   Mrp=-0.03       Mtp=-0.77
  Principal axes:
   T  Val=  1.28  Plg=65  Azm=219
   N        0.62      20       76
   P       -1.90      13      341

 Best Double Couple:Mo=1.6*10**17
  NP1:Strike= 46 Dip=36 Slip=  54
  NP2:       268     62       113
                                      
               -------                
          --   ------------           
        ---- P --------------         
      ------   ----------------       
    ---------------------------##     
   -----------------------------##    
   -----------------------------##    
  -------####################--####   
  ---##########################---#   
  ############################-----   
  ############   #############-----   
  ############ T ############------   
   ###########   ##########-------    
   #######################--------    
    ###################----------     
      ##############-----------       
        ---------------------         
          -----------------           
               -------                
                                      


        

SCSN Moment Tensor Solution Message **

REAL-TIME SOLUTION: OPERATOR REVIEWED
Reviewed On: 07/29/2008 19:7:4

Inversion Method: Complete Waveform
Number of Stations used: 6
Stations: CI.VTV CI.SBPX CI.DGR CI.SCI2 CI.LGU CI.CHF

Real-Time Solution:
-------------------
Event ID    : 14383980
Magnitude   : 5.76
Depth (km)  : 12.4
Origin Time :  07/29/2008 18:42:15:690
Latitude    : 33.96
Longitude   : -117.75
Further Information at: http://pasadena.wr.usgs.gov/recenteqs/Quakes/ci14383980.htm

SCSN Moment Tensor Solution:
----------------------------
Moment Magnitude     : 5.39
Depth (km)           : 14
Variance Reduction(%): 78.18
Quality Factor       : A
   (A : Mw, MT good enough for distribution)
   (B : Mw only good enough for distribution)
   (C : Solution needs review before distribution)


Best Fitting Double Couple and CLVD Solution:
---------------------------------------------------

Moment Tensor: Scale = 10**21 Dyne-cm
    Component   Value
       Mxx      -1450
       Mxy      495
       Mxz      -198
       Myy      602
       Myz      -689
       Mzz      844

Best Fitting Double Couple Solution:
--------------------------------------------------
 Moment Tensor: Scale = 10**24 Dyne-cm
    Component   Value
       Mxx     -1.417
       Mxy      0.490
       Mxz     -0.190
       Myy      0.585
       Myz     -0.739
       Mzz      0.832

 Principle Axes:
    Axis    Value   Plunge   Azimuth
      T     1.531      48      257
      N     0.000      42       78
      P    -1.531       1      347

 Best Fitting Double-Couple:
    Mo = 1.53E+24 Dyne-cm
    Plane   Strike   Rake   Dip
     NP1      291     142    59
     NP2       43      37    58

 Moment Magnitude = 5.39


                  P -------
              ---   -------------
           -------------------------
         -----------------------------
       ------------------------------###
      -------------------------------####
     --------------------------------#####
    ####################------------#######
    #########################-------#######
   #############################---#########
   ###############################-#########
   ##########   #################----#######
   ########## T ###############--------#####
   ##########   ##############----------####
    ########################--------------#
    ######################-----------------
     ###################------------------
      ###############--------------------
       ###########----------------------
         ###--------------------------
           -------------------------
              -------------------
                    -------

     Lower Hemisphere Equiangle Projection

=============  Station Information ==============

Name       Distance     Azimuth     VR      ZCore
-------------------------------------------------
CI.VTV       77.054     30.048   76.836     12.00
CI.SBPX      56.326     57.420   82.856      9.00
CI.DGR       76.703    116.423   82.425     12.00
CI.SCI2     131.529    214.497   62.227     16.00
CI.LGU      122.621    278.069   72.110     16.00
CI.CHF       48.604    328.515   81.956      6.00
        

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    80    40   -90   4.79 0.2780
WVFGRD96    1.0    80    45   -80   4.80 0.2450
WVFGRD96    2.0    80    40   -90   4.97 0.3307
WVFGRD96    3.0   100    35   -60   4.99 0.2756
WVFGRD96    4.0   215    75   -50   4.96 0.3062
WVFGRD96    5.0   215    80   -45   4.98 0.3454
WVFGRD96    6.0   215    80   -45   5.01 0.3834
WVFGRD96    7.0   215    80   -40   5.03 0.4174
WVFGRD96    8.0    40    80    45   5.10 0.4499
WVFGRD96    9.0    40    75    45   5.13 0.4882
WVFGRD96   10.0    45    65    45   5.17 0.5266
WVFGRD96   11.0    50    50    50   5.23 0.5711
WVFGRD96   12.0    50    50    50   5.26 0.6110
WVFGRD96   13.0    50    50    50   5.28 0.6414
WVFGRD96   14.0    50    50    45   5.30 0.6637
WVFGRD96   15.0    45    55    40   5.31 0.6796
WVFGRD96   16.0    45    55    40   5.33 0.6889
WVFGRD96   17.0    45    55    40   5.34 0.6946
WVFGRD96   18.0    45    55    40   5.35 0.6940
WVFGRD96   19.0    45    55    40   5.37 0.6875
WVFGRD96   20.0    40    60    35   5.37 0.6785
WVFGRD96   21.0    45    60    40   5.38 0.6662
WVFGRD96   22.0    45    60    40   5.39 0.6532
WVFGRD96   23.0    45    60    40   5.40 0.6364
WVFGRD96   24.0    40    65    40   5.39 0.6192
WVFGRD96   25.0    40    65    40   5.40 0.5987
WVFGRD96   26.0    40    65    40   5.40 0.5774
WVFGRD96   27.0    45    65    45   5.40 0.5540
WVFGRD96   28.0    40    70    45   5.40 0.5305
WVFGRD96   29.0    40    70    45   5.40 0.5057

The best solution is

WVFGRD96   17.0    45    55    40   5.34 0.6946

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Surface-Wave Focal Mechanism

The following figure shows the stations used in the grid search for the best focal mechanism to fit the surface-wave spectral amplitudes of the Love and Rayleigh waves.
Location of broadband stations used to obtain focal mechanism from surface-wave spectral amplitudes

The surface-wave determined focal mechanism is shown here.


  NODAL PLANES 

  
  STK=     279.72
  DIP=      54.61
 RAKE=     119.84
  
             OR
  
  STK=      54.99
  DIP=      45.00
 RAKE=      55.00
 
 
DEPTH = 13.0 km
 
Mw = 5.46
Best Fit 0.8748 - P-T axis plot gives solutions with FIT greater than FIT90

First motion data

The P-wave first motion data for focal mechanism studies are as follow:

Sta Az    Dist   First motion

Surface-wave analysis

Surface wave analysis was performed using codes from Computer Programs in Seismology, specifically the multiple filter analysis program do_mft and the surface-wave radiation pattern search program srfgrd96.

Data preparation

Digital data were collected, instrument response removed and traces converted to Z, R an T components. Multiple filter analysis was applied to the Z and T traces to obtain the Rayleigh- and Love-wave spectral amplitudes, respectively. These were input to the search program which examined all depths between 1 and 25 km and all possible mechanisms.
Best mechanism fit as a function of depth. The preferred depth is given above. Lower hemisphere projection

Pressure-tension axis trends. Since the surface-wave spectra search does not distinguish between P and T axes and since there is a 180 ambiguity in strike, all possible P and T axes are plotted. First motion data and waveforms will be used to select the preferred mechanism. The purpose of this plot is to provide an idea of the possible range of solutions. The P and T-axes for all mechanisms with goodness of fit greater than 0.9 FITMAX (above) are plotted here.


Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the Love and Rayleigh wave radiation patterns. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. Because of the symmetry of the spectral amplitude rediation patterns, only strikes from 0-180 degrees are sampled.

Love-wave radiation patterns

Rayleigh-wave radiation patterns

Broadband station distribution

The distribution of broadband stations with azimuth and distance is
Listing of broadband stations used

Waveform comparison for this mechanism

Since the analysis of the surface-wave radiation patterns uses only spectral amplitudes and because the surfave-wave radiation patterns have a 180 degree symmetry, each surface-wave solution consists of four possible focal mechanisms corresponding to the interchange of the P- and T-axes and a roation of the mechanism by 180 degrees. To select one mechanism, P-wave first motion can be used. This was not possible in this case because all the P-wave first motions were emergent ( a feature of the P-wave wave takeoff angle, the station location and the mechanism). The other way to select among the mechanisms is to compute forward synthetics and compare the observed and predicted waveforms.

The fits to the waveforms with the given mechanism are show below:

This figure shows the fit to the three components of motion (Z - vertical, R-radial and T - transverse). For each station and component, the observed traces is shown in red and the model predicted trace in blue. The traces represent filtered ground velocity in units of meters/sec (the peak value is printed adjacent to each trace; each pair of traces to plotted to the same scale to emphasize the difference in levels). Both synthetic and observed traces have been filtered using the SAC commands:

hp c 0.02 n 3
lp c 0.10 n 3

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Appendix A


Spectra fit plots to each station

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Wed Jul 30 21:28:25 CDT 2008

Last Changed 2008/07/29