2008/07/22 09:32:51 42.9000 -111.3000 10.0 4.10 Idaho
USGS Felt map for this earthquake
SLU Moment Tensor Solution 2008/07/22 09:32:51 42.9000 -111.3000 10.0 4.10 Idaho Best Fitting Double Couple Mo = 1.29e+21 dyne-cm Mw = 3.34 Z = 6 km Plane Strike Dip Rake NP1 314 76 154 NP2 50 65 15 Principal Axes: Axis Value Plunge Azimuth T 1.29e+21 28 270 N 0.00e+00 61 108 P -1.29e+21 8 4 Moment Tensor: (dyne-cm) Component Value Mxx -1.26e+21 Mxy -7.01e+19 Mxz -1.74e+20 Myy 1.01e+21 Myz -5.41e+20 Mzz 2.55e+20 ------- P ---- ----------- -------- ---------------------------- #----------------------------- #######--------------------------# ###########----------------------### ###############------------------##### ##################----------------###### ####################-------------####### #######################---------########## #### ##################------########### #### T ####################--############# #### ####################-############## ########################-----########### ######################--------########## ##################-------------####### ##############-----------------##### #########----------------------### ------------------------------ ---------------------------- ---------------------- -------------- Harvard Convention Moment Tensor: R T F 2.55e+20 -1.74e+20 5.41e+20 -1.74e+20 -1.26e+21 7.01e+19 5.41e+20 7.01e+19 1.01e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080722093251/index.html |
STK = 50 DIP = 65 RAKE = 15 MW = 3.34 HS = 6.0
The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution 2008/07/22 09:32:51 42.9000 -111.3000 10.0 4.10 Idaho Best Fitting Double Couple Mo = 1.29e+21 dyne-cm Mw = 3.34 Z = 6 km Plane Strike Dip Rake NP1 314 76 154 NP2 50 65 15 Principal Axes: Axis Value Plunge Azimuth T 1.29e+21 28 270 N 0.00e+00 61 108 P -1.29e+21 8 4 Moment Tensor: (dyne-cm) Component Value Mxx -1.26e+21 Mxy -7.01e+19 Mxz -1.74e+20 Myy 1.01e+21 Myz -5.41e+20 Mzz 2.55e+20 ------- P ---- ----------- -------- ---------------------------- #----------------------------- #######--------------------------# ###########----------------------### ###############------------------##### ##################----------------###### ####################-------------####### #######################---------########## #### ##################------########### #### T ####################--############# #### ####################-############## ########################-----########### ######################--------########## ##################-------------####### ##############-----------------##### #########----------------------### ------------------------------ ---------------------------- ---------------------- -------------- Harvard Convention Moment Tensor: R T F 2.55e+20 -1.74e+20 5.41e+20 -1.74e+20 -1.26e+21 7.01e+19 5.41e+20 7.01e+19 1.01e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080722093251/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 50 80 15 2.98 0.3207 WVFGRD96 1.0 50 80 15 3.01 0.3405 WVFGRD96 2.0 50 80 20 3.16 0.4329 WVFGRD96 3.0 40 45 -20 3.29 0.4816 WVFGRD96 4.0 40 50 -25 3.31 0.5150 WVFGRD96 5.0 50 65 20 3.32 0.5269 WVFGRD96 6.0 50 65 15 3.34 0.5314 WVFGRD96 7.0 50 70 15 3.37 0.5281 WVFGRD96 8.0 50 65 10 3.41 0.5137 WVFGRD96 9.0 50 70 10 3.42 0.4965 WVFGRD96 10.0 50 70 10 3.44 0.4778 WVFGRD96 11.0 50 75 10 3.45 0.4583 WVFGRD96 12.0 50 75 5 3.46 0.4379 WVFGRD96 13.0 50 75 5 3.47 0.4179 WVFGRD96 14.0 45 70 -15 3.49 0.3986 WVFGRD96 15.0 45 70 -15 3.50 0.3799 WVFGRD96 16.0 45 75 -20 3.51 0.3629 WVFGRD96 17.0 45 75 -20 3.51 0.3477 WVFGRD96 18.0 45 70 -20 3.52 0.3333 WVFGRD96 19.0 45 70 -20 3.53 0.3197 WVFGRD96 20.0 45 70 -20 3.53 0.3066 WVFGRD96 21.0 45 70 -20 3.53 0.2942 WVFGRD96 22.0 45 70 -20 3.54 0.2829 WVFGRD96 23.0 50 70 -10 3.53 0.2718 WVFGRD96 24.0 50 70 -10 3.54 0.2623 WVFGRD96 25.0 320 90 -20 3.54 0.2666 WVFGRD96 26.0 140 85 20 3.55 0.2729 WVFGRD96 27.0 320 90 -20 3.56 0.2778 WVFGRD96 28.0 140 90 20 3.57 0.2823 WVFGRD96 29.0 140 90 20 3.58 0.2891
The best solution is
WVFGRD96 6.0 50 65 15 3.34 0.5314
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.
Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Tue Jul 22 06:29:23 CDT 2008