Location

2008/05/08 05:55:02 39.539 -119.915 3 3.8 Nevada

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 SLU Moment Tensor Solution
 2008/05/08 05:55:02 39.539 -119.915 3 3.8 Nevada
 
 Best Fitting Double Couple
    Mo = 3.16e+21 dyne-cm
    Mw = 3.60 
    Z  = 11 km
     Plane   Strike  Dip  Rake
      NP1       25    85   -20
      NP2      117    70   -175
 Principal Axes:
   Axis    Value   Plunge  Azimuth
     T   3.16e+21     10      73
     N   0.00e+00     69     192
     P  -3.16e+21     18     339



 Moment Tensor: (dyne-cm)
    Component  Value
       Mxx    -2.23e+21
       Mxy     1.83e+21
       Mxz    -6.85e+20
       Myy     2.42e+21
       Myz     8.56e+20
       Mzz    -1.88e+20
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ---   -------------###              
              ------ P -------------######           
             -------   ------------########          
           ------------------------##########        
          ------------------------############       
         #-----------------------###########         
        ###---------------------############ T #     
        #####------------------#############   #     
       ########----------------##################    
       ##########-------------###################    
       #############---------####################    
       ###############------#####################    
        ##################-#####################     
        ##################----##################     
         ################----------############      
          ##############----------------------       
           ############----------------------        
             #########---------------------          
              #######---------------------           
                 ###-------------------              
                     --------------                  
                                                     
                                                     
                                                     

 Harvard Convention
 Moment Tensor:
      R          T          F
 -1.88e+20  -6.85e+20  -8.56e+20 
 -6.85e+20  -2.23e+21  -1.83e+21 
 -8.56e+20  -1.83e+21   2.42e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080508055502/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 25
      DIP = 85
     RAKE = -20
       MW = 3.60
       HS = 11.0

The waveform inversion is preferred even though there is not much depth sensitivity. The frequency passband is very low frequency to overcome rapid changes in wave propagation that mitigate against the use of a single wave propagation model. The focal mechanism is such that there is not much depth control from the surface-waves either.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
UCB
 SLU Moment Tensor Solution
 2008/05/08 05:55:02 39.539 -119.915 3 3.8 Nevada
 
 Best Fitting Double Couple
    Mo = 3.16e+21 dyne-cm
    Mw = 3.60 
    Z  = 11 km
     Plane   Strike  Dip  Rake
      NP1       25    85   -20
      NP2      117    70   -175
 Principal Axes:
   Axis    Value   Plunge  Azimuth
     T   3.16e+21     10      73
     N   0.00e+00     69     192
     P  -3.16e+21     18     339



 Moment Tensor: (dyne-cm)
    Component  Value
       Mxx    -2.23e+21
       Mxy     1.83e+21
       Mxz    -6.85e+20
       Myy     2.42e+21
       Myz     8.56e+20
       Mzz    -1.88e+20
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ---   -------------###              
              ------ P -------------######           
             -------   ------------########          
           ------------------------##########        
          ------------------------############       
         #-----------------------###########         
        ###---------------------############ T #     
        #####------------------#############   #     
       ########----------------##################    
       ##########-------------###################    
       #############---------####################    
       ###############------#####################    
        ##################-#####################     
        ##################----##################     
         ################----------############      
          ##############----------------------       
           ############----------------------        
             #########---------------------          
              #######---------------------           
                 ###-------------------              
                     --------------                  
                                                     
                                                     
                                                     

 Harvard Convention
 Moment Tensor:
      R          T          F
 -1.88e+20  -6.85e+20  -8.56e+20 
 -6.85e+20  -2.23e+21  -1.83e+21 
 -8.56e+20  -1.83e+21   2.42e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080508055502/index.html
	
This is a preliminary NCSS moment tensor solution for the event located
5 km NE of Verdi-Mogul, NV; 39.5415N 119.9168W; Z=2.5km;  ML=3.54;
(USGS/UCB Joint Notification System) on  05/08/2008 05:55:01:760 UTC.
Other information about this event can be viewed at:

RECEIVED Thu, 8 May 2008 17:52:28 -0500 (CDT)

Reviewed by:
Peggy
UCB Seismological Laboratory

Inversion method:   complete waveform
Stations used:      NN.BEK BK.ORV BK.CMB BK.HELL 
 
 Berkeley Moment Tensor Solution
 
 Best Fitting Double-Couple:
    Mo = 3.40E+21 Dyne-cm
    Mw = 3.62
    Z  = 5 km
    Plane   Strike   Rake   Dip
     NP1      118    -167    82
     NP2       26      -8    77
 
 Event Date/Time:  05/08/2008 05:55:01:760
 Event ID:        51202333
 
                                                                   
                                                                   
                            -----------                            
                      -----------------------                      
                  ------   --------------------##                  
               --------- P -------------------######               
             -----------   -------------------########             
           -----------------------------------##########           
          -----------------------------------############          
         ------------------------------------#############         
       -------------------------------------################       
      ##-----------------------------------##################      
      #####--------------------------------##################      
     ########-----------------------------####################     
    ############-------------------------######################    
    ###############----------------------######################    
    ##################------------------#######################    
    #####################--------------########################    
   #########################----------##########################   
    ###########################------##########################    
    ###############################-###########################    
    ###############################---#########################    
    #   ##########################--------#####################    
      T #########################--------------###############     
        ########################-------------------##########      
      #########################-------------------------#####      
       #######################------------------------------       
         ####################-----------------------------         
          #################------------------------------          
           ###############------------------------------           
             ############-----------------------------             
               ########-----------------------------               
                  ###----------------------------                  
                      -----------------------                      
                            -----------                            
                                                                   
     Lower Hemisphere Equiangle Projection
 

Deviatoric Solution:
 Principal Axes:
    Axis    Value   Plunge   Azimuth
      T     3.227       3      252
      N     0.288      75      149
      P    -3.516      14      343
 
 Source Composition:
    Type   Percent
     DC      83.6
     CLVD    16.4
     Iso      0.0
 
 Moment Tensor: Scale = 10**21 Dyne-cm
    Component   Value
       Mxx     -2.707
       Mxy      1.847
       Mxz     -0.925
       Myy      2.640
       Myz      0.099
       Mzz      0.066
 
                                                                   
                                                                   
                            -----------                            
                      -----------------------                      
                  -------   -------------------##                  
               ---------- P -------------------#####               
             ------------   -------------------#######             
           -----------------------------------##########           
          ------------------------------------###########          
         ------------------------------------#############         
       -------------------------------------################       
      ##------------------------------------#################      
      ####---------------------------------##################      
     ########-----------------------------####################     
    ############-------------------------######################    
    ###############---------------------#######################    
    ###################---------------#########################    
    #######################---------###########################    
   #############################################################   
    ###########################################################    
    ###########################################################    
    ###########################################################    
    #   #######################################################    
      T ##############################-----###################     
        ##########################----------------###########      
      ##########################-------------------------####      
       ########################-----------------------------       
         ####################-----------------------------         
          #################------------------------------          
           ###############------------------------------           
             ###########------------------------------             
               #######------------------------------               
                  ##-----------------------------                  
                      -----------------------                      
                            -----------                            
                                                                   
     Lower Hemisphere Equiangle Projection
 
        

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.05 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   205    90     5   3.29 0.3975
WVFGRD96    1.0   205    90     5   3.32 0.4268
WVFGRD96    2.0    25    90     0   3.40 0.5142
WVFGRD96    3.0   205    90    10   3.44 0.5493
WVFGRD96    4.0    25    85   -15   3.47 0.5699
WVFGRD96    5.0    25    80   -20   3.50 0.5824
WVFGRD96    6.0    25    80   -20   3.52 0.5930
WVFGRD96    7.0   205    90    20   3.53 0.5975
WVFGRD96    8.0    25    80   -25   3.57 0.6170
WVFGRD96    9.0    25    80   -25   3.59 0.6186
WVFGRD96   10.0    25    85   -25   3.59 0.6199
WVFGRD96   11.0    25    85   -20   3.60 0.6199
WVFGRD96   12.0    25    85   -20   3.61 0.6193
WVFGRD96   13.0    25    85   -20   3.62 0.6177
WVFGRD96   14.0    25    90   -20   3.63 0.6161
WVFGRD96   15.0   205    85    20   3.63 0.6155
WVFGRD96   16.0   205    80    20   3.64 0.6138
WVFGRD96   17.0   205    80    20   3.65 0.6111
WVFGRD96   18.0   205    80    20   3.65 0.6066
WVFGRD96   19.0    25    90   -15   3.67 0.5971
WVFGRD96   20.0    25    90   -15   3.67 0.5921
WVFGRD96   21.0    25    90   -15   3.68 0.5860
WVFGRD96   22.0    25    90   -15   3.69 0.5796
WVFGRD96   23.0   205    80    15   3.69 0.5732
WVFGRD96   24.0    25    80    15   3.70 0.5660
WVFGRD96   25.0    25    80    15   3.71 0.5594
WVFGRD96   26.0    25    80    15   3.71 0.5526
WVFGRD96   27.0    25    80    15   3.72 0.5452
WVFGRD96   28.0    25    80    15   3.73 0.5375
WVFGRD96   29.0    25    80    15   3.73 0.5296

The best solution is

WVFGRD96   11.0    25    85   -20   3.60 0.6199

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.05 n 3
Figure 3. Waveform comparison for preferred depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Surface-Wave Focal Mechanism

The following figure shows the stations used in the grid search for the best focal mechanism to fit the surface-wave spectral amplitudes of the Love and Rayleigh waves.
Location of broadband stations used to obtain focal mechanism from surface-wave spectral amplitudes

The surface-wave determined focal mechanism is shown here.


  NODAL PLANES 

  
  STK=      21.87
  DIP=      68.52
 RAKE=     -32.50
  
             OR
  
  STK=     124.99
  DIP=      60.00
 RAKE=    -154.99
 
 
DEPTH = 4.0 km
 
Mw = 3.63
Best Fit 0.8812 - P-T axis plot gives solutions with FIT greater than FIT90

First motion data

The P-wave first motion data for focal mechanism studies are as follow:

Sta Az(deg)    Dist(km)   First motion

Surface-wave analysis

Surface wave analysis was performed using codes from Computer Programs in Seismology, specifically the multiple filter analysis program do_mft and the surface-wave radiation pattern search program srfgrd96.

Data preparation

Digital data were collected, instrument response removed and traces converted to Z, R an T components. Multiple filter analysis was applied to the Z and T traces to obtain the Rayleigh- and Love-wave spectral amplitudes, respectively. These were input to the search program which examined all depths between 1 and 25 km and all possible mechanisms.
Best mechanism fit as a function of depth. The preferred depth is given above. Lower hemisphere projection

Pressure-tension axis trends. Since the surface-wave spectra search does not distinguish between P and T axes and since there is a 180 ambiguity in strike, all possible P and T axes are plotted. First motion data and waveforms will be used to select the preferred mechanism. The purpose of this plot is to provide an idea of the possible range of solutions. The P and T-axes for all mechanisms with goodness of fit greater than 0.9 FITMAX (above) are plotted here.


Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the Love and Rayleigh wave radiation patterns. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. Because of the symmetry of the spectral amplitude rediation patterns, only strikes from 0-180 degrees are sampled.

Love-wave radiation patterns

Rayleigh-wave radiation patterns

Broadband station distribution

The distribution of broadband stations with azimuth and distance is

Sta Az(deg)    Dist(km)   
ORV	  271	  136
CMB	  194	  172
GASB	  274	  241
BDM	  225	  244
WDC	  298	  252
CVS	  240	  257
MOD	  353	  264
BRIB	  228	  265
BKS	  228	  274
HOPS	  258	  279
MHC	  212	  287
MCCM	  240	  300
PACP	  204	  306
TIN	  151	  313
HELL	  166	  327
SAO	  204	  336
WVOR	   18	  339
YBH	  317	  339
HAST	  203	  378
JCC	  293	  378
PKD	  188	  403
ELK	   70	  420
HUMO	  324	  426
RAMR	  191	  441
ISA	  163	  449
ARV	  169	  499
GSC	  149	  545
BGU	   73	  606
DUG	   81	  612
MWC	  164	  613
COR	  334	  627
HLID	   44	  640
BBR	  155	  643
LDF	  138	  644
RVR	  159	  656
NLU	   84	  673
BEL	  149	  707
HWUT	   69	  743
SRU	   90	  811
AHID	   61	  822
RRI2	   57	  833
DCID1	   55	  856
REDW	   58	  868
WUAZ	  118	  876
SNOW	   57	  879
DLMT	   40	  883
IMW	   54	  889
LOHW	   57	  898
BW06	   64	  940
MSO	   29	  944
NEW	   12	  995
TUC	  132	 1149
ISCO	   84	 1226
ANMO	  109	 1297

Waveform comparison for this mechanism

Since the analysis of the surface-wave radiation patterns uses only spectral amplitudes and because the surfave-wave radiation patterns have a 180 degree symmetry, each surface-wave solution consists of four possible focal mechanisms corresponding to the interchange of the P- and T-axes and a roation of the mechanism by 180 degrees. To select one mechanism, P-wave first motion can be used. This was not possible in this case because all the P-wave first motions were emergent ( a feature of the P-wave wave takeoff angle, the station location and the mechanism). The other way to select among the mechanisms is to compute forward synthetics and compare the observed and predicted waveforms.

The fits to the waveforms with the given mechanism are show below:

This figure shows the fit to the three components of motion (Z - vertical, R-radial and T - transverse). For each station and component, the observed traces is shown in red and the model predicted trace in blue. The traces represent filtered ground velocity in units of meters/sec (the peak value is printed adjacent to each trace; each pair of traces to plotted to the same scale to emphasize the difference in levels). Both synthetic and observed traces have been filtered using the SAC commands:

hp c 0.02 n 3
lp c 0.05 n 3

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Appendix A


Spectra fit plots to each station

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Thu May 8 17:57:00 CDT 2008

Last Changed 2008/05/08