Location

2008/04/07 09:51:13 28.921 -98.088 5.0 3.7 Texas

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 SLU Moment Tensor Solution
 2008/04/07 09:51:13 28.921 -98.088 5.0 3.7 Texas
 
 Best Fitting Double Couple
    Mo = 7.76e+21 dyne-cm
    Mw = 3.86 
    Z  = 4 km
     Plane   Strike  Dip  Rake
      NP1      239    46   -80
      NP2       45    45   -100
 Principal Axes:
   Axis    Value   Plunge  Azimuth
     T   7.76e+21      0     322
     N   0.00e+00      7      52
     P  -7.76e+21     83     229



 Moment Tensor: (dyne-cm)
    Component  Value
       Mxx     4.78e+21
       Mxy    -3.82e+21
       Mxz     6.74e+20
       Myy     2.87e+21
       Myz     6.74e+20
       Mzz    -7.64e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              T ##########################           
                ###########################          
           #################-----------------        
          ##############--------------------##       
         ############-----------------------###      
        ##########-------------------------#####     
        ########---------------------------#####     
       ########----------------------------######    
       ######------------   --------------#######    
       #####------------- P -------------########    
       #####-------------   ------------#########    
        ###----------------------------#########     
        ##---------------------------###########     
         #--------------------------###########      
          -----------------------#############       
           --------------------##############        
             --------------################          
              ############################           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     

 Harvard Convention
 Moment Tensor:
      R          T          F
 -7.64e+21   6.74e+20  -6.74e+20 
  6.74e+20   4.78e+21   3.82e+21 
 -6.74e+20   3.82e+21   2.87e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080407095113/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 45
      DIP = 45
     RAKE = -100
       MW = 3.86
       HS = 4.0

This was a hard data set to work with because of the wave propagation effects of the Gult Coastal Plain. Stations to the east, e.g., HKT, KTVX and most eastern US stations did not record this event well at the longer periods because of the 2-D nature of the wave propagation and the very low surface velocities. The Rayleigh waves were well recorded to 25 degrees to the W-NW. The surface-wave radiation pattern fits show a log of scatter. The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 SLU Moment Tensor Solution
 2008/04/07 09:51:13 28.921 -98.088 5.0 3.7 Texas
 
 Best Fitting Double Couple
    Mo = 7.76e+21 dyne-cm
    Mw = 3.86 
    Z  = 4 km
     Plane   Strike  Dip  Rake
      NP1      239    46   -80
      NP2       45    45   -100
 Principal Axes:
   Axis    Value   Plunge  Azimuth
     T   7.76e+21      0     322
     N   0.00e+00      7      52
     P  -7.76e+21     83     229



 Moment Tensor: (dyne-cm)
    Component  Value
       Mxx     4.78e+21
       Mxy    -3.82e+21
       Mxz     6.74e+20
       Myy     2.87e+21
       Myz     6.74e+20
       Mzz    -7.64e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              T ##########################           
                ###########################          
           #################-----------------        
          ##############--------------------##       
         ############-----------------------###      
        ##########-------------------------#####     
        ########---------------------------#####     
       ########----------------------------######    
       ######------------   --------------#######    
       #####------------- P -------------########    
       #####-------------   ------------#########    
        ###----------------------------#########     
        ##---------------------------###########     
         #--------------------------###########      
          -----------------------#############       
           --------------------##############        
             --------------################          
              ############################           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     

 Harvard Convention
 Moment Tensor:
      R          T          F
 -7.64e+21   6.74e+20  -6.74e+20 
  6.74e+20   4.78e+21   3.82e+21 
 -6.74e+20   3.82e+21   2.87e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080407095113/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.06 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   270    50   -25   3.54 0.2887
WVFGRD96    1.0   245    25   -75   3.64 0.3335
WVFGRD96    2.0   235    35   -90   3.71 0.4640
WVFGRD96    3.0   240    45   -80   3.79 0.5664
WVFGRD96    4.0    45    45  -100   3.86 0.6178
WVFGRD96    5.0   250    50   -60   3.90 0.5811
WVFGRD96    6.0    90    80   -10   3.91 0.5268
WVFGRD96    7.0   270    90     0   3.94 0.4946
WVFGRD96    8.0   270    85    -5   3.95 0.4493
WVFGRD96    9.0   315    10    10   3.81 0.4161
WVFGRD96   10.0   320    10    20   3.81 0.4359
WVFGRD96   11.0   325    10    25   3.81 0.4530
WVFGRD96   12.0   325    10    25   3.81 0.4685
WVFGRD96   13.0   325    10    25   3.81 0.4820
WVFGRD96   14.0   335    15    35   3.82 0.4942
WVFGRD96   15.0   290    50    40   3.96 0.5102
WVFGRD96   16.0   290    50    40   3.97 0.5224
WVFGRD96   17.0   290    50    40   3.97 0.5338
WVFGRD96   18.0   290    50    40   3.98 0.5418
WVFGRD96   19.0   290    50    40   3.99 0.5479
WVFGRD96   20.0   295    50    45   3.99 0.5536
WVFGRD96   21.0   225    75    80   3.88 0.5592
WVFGRD96   22.0   225    70    80   3.90 0.5670
WVFGRD96   23.0   225    70    80   3.91 0.5733
WVFGRD96   24.0   225    70    80   3.92 0.5778
WVFGRD96   25.0   225    70    80   3.92 0.5822
WVFGRD96   26.0   225    65    80   3.94 0.5854
WVFGRD96   27.0   225    65    80   3.94 0.5886
WVFGRD96   28.0   225    65    80   3.95 0.5907
WVFGRD96   29.0   225    65    80   3.96 0.5910

The best solution is

WVFGRD96    4.0    45    45  -100   3.86 0.6178

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.06 n 3
Figure 3. Waveform comparison for depth of 8 km
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Surface-Wave Focal Mechanism

The following figure shows the stations used in the grid search for the best focal mechanism to fit the surface-wave spectral amplitudes of the Love and Rayleigh waves.
Location of broadband stations used to obtain focal mechanism from surface-wave spectral amplitudes

The surface-wave determined focal mechanism is shown here.


  NODAL PLANES 

  
  STK=      40.00
  DIP=      64.99
 RAKE=    -105.00
  
             OR
  
  STK=     252.37
  DIP=      28.91
 RAKE=     -60.97
 
 
DEPTH = 5.0 km
 
Mw = 4.08
Best Fit 0.8755 - P-T axis plot gives solutions with FIT greater than FIT90

First motion data

The P-wave first motion data for focal mechanism studies are as follow:

Sta Az(deg)    Dist(km)   First motion

Surface-wave analysis

Surface wave analysis was performed using codes from Computer Programs in Seismology, specifically the multiple filter analysis program do_mft and the surface-wave radiation pattern search program srfgrd96.

Data preparation

Digital data were collected, instrument response removed and traces converted to Z, R an T components. Multiple filter analysis was applied to the Z and T traces to obtain the Rayleigh- and Love-wave spectral amplitudes, respectively. These were input to the search program which examined all depths between 1 and 25 km and all possible mechanisms.
Best mechanism fit as a function of depth. The preferred depth is given above. Lower hemisphere projection

Pressure-tension axis trends. Since the surface-wave spectra search does not distinguish between P and T axes and since there is a 180 ambiguity in strike, all possible P and T axes are plotted. First motion data and waveforms will be used to select the preferred mechanism. The purpose of this plot is to provide an idea of the possible range of solutions. The P and T-axes for all mechanisms with goodness of fit greater than 0.9 FITMAX (above) are plotted here.


Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the Love and Rayleigh wave radiation patterns. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. Because of the symmetry of the spectral amplitude rediation patterns, only strikes from 0-180 degrees are sampled.

Love-wave radiation patterns

Rayleigh-wave radiation patterns

Broadband station distribution

The distribution of broadband stations with azimuth and distance is

Sta Az(deg)    Dist(km)   
JCT	  317	  239
NATX	   46	  456
WMOK	  354	  648
AMTX	  334	  743
MIAR	   33	  756
MNTX	  296	  766
324A	  293	  792
VBMS	   61	  813
222A	  294	  934
122A	  298	  950
221A	  293	  991
121A	  296	 1011
Y22D	  306	 1015
OXF	   51	 1029
MPH	   46	 1032
ANMO	  312	 1035
320A	  288	 1040
X22A	  308	 1047
220A	  291	 1055
W22A	  312	 1073
120A	  294	 1086
BRAL	   74	 1093
Z20A	  298	 1105
CBKS	  352	 1108
319A	  287	 1111
219A	  290	 1125
BMO	  321	 1128
PBMO	   37	 1128
W21A	  310	 1134
KSU1	    6	 1137
PVMO	   41	 1143
119A	  294	 1154
PLAL	   52	 1160
Z19A	  297	 1170
318A	  287	 1179
CCM	  300	 1195
218A	  289	 1197
SDCO	  327	 1197
Y19A	  301	 1198
W20A	  308	 1199
118A	  293	 1209
T22A	  320	 1217
X19A	  303	 1224
Z18A	  295	 1230
FVM	   33	 1231
WVT	   48	 1251
Y18A	  298	 1257
217A	  288	 1263
W19A	  306	 1268
117A	  292	 1276
V19A	  309	 1276
Z17A	  295	 1276
SIUC	   38	 1277
X18A	  302	 1283
W18A	  305	 1296
SLM	   32	 1299
R22A	  324	 1308
Y17A	  297	 1323
S21A	  320	 1324
216A	  288	 1327
MVCO	  316	 1336
V18A	  307	 1344
T19A	  314	 1346
X17A	  300	 1346
Z16A	  294	 1362
116A	  291	 1364
R21A	  323	 1365
Q22A	  326	 1370
W17A	  303	 1373
OGNE	  346	 1381
U18A	  310	 1381
Y16A	  297	 1385
ISCO	  332	 1390
USIN	   41	 1393
SMCO	  327	 1401
R20A	  320	 1402
X16A	  299	 1404
Q21A	  324	 1405
115A	  291	 1415
Z15A	  293	 1425
OLIL	   38	 1426
T18A	  313	 1427
W16A	  302	 1441
WUAZ	  304	 1448
214A	  287	 1452
U17A	  309	 1452
P21A	  326	 1457
Q20A	  322	 1457
U16A	  307	 1461
Y15A	  296	 1463
R19A	  318	 1466
S18A	  314	 1473
X15A	  298	 1474
114A	  290	 1476
T17A	  310	 1486
Z14A	  293	 1498
WCI	   44	 1502
W15A	  301	 1506
P20A	  324	 1507
R18A	  317	 1514
Q19A	  320	 1516
O21A	  328	 1518
HDIL	   30	 1519
Y14A	  295	 1521
S17A	  313	 1526
PHWY	  336	 1528
V15A	  304	 1528
X14A	  297	 1530
T16A	  309	 1538
O20A	  326	 1552
P19A	  323	 1552
113A	  290	 1557
BLO	   40	 1557
Z13A	  292	 1558
U15A	  306	 1568
N21A	  329	 1569
R17A	  315	 1572
W14A	  300	 1576
Q18A	  319	 1582
M22A	  333	 1585
Y13A	  294	 1591
V14A	  302	 1596
TZTN	   54	 1601
T15A	  308	 1607
SRU	  318	 1608
N20A	  328	 1613
O19A	  324	 1615
X13A	  297	 1616
R16A	  313	 1617
112A	  288	 1628
P18A	  320	 1629
L22A	  335	 1638
Q16A	  316	 1638
M21A	  332	 1639
RWWY	  332	 1639
U14A	  304	 1639
W13A	  299	 1640
S15A	  310	 1643
ECSD	    4	 1649
P17A	  318	 1649
Y12C	  293	 1651
GLA	  290	 1661
O18A	  322	 1664
T14A	  307	 1664
N19A	  326	 1668
R15A	  312	 1669
L21A	  332	 1672
V13A	  301	 1679
N18A	  325	 1702
U13A	  303	 1702
O17A	  321	 1703
JFWS	   22	 1704
S14A	  309	 1709
CCUT	  308	 1712
M19A	  327	 1719
P16A	  317	 1719
L20A	  330	 1721
Q15A	  314	 1727
T13A	  305	 1727
R14A	  311	 1729
W12A	  298	 1732
V12A	  300	 1746
U12A	  303	 1750
LDF	  298	 1752
O16A	  319	 1752
S13A	  307	 1752
P15A	  316	 1758
M18A	  325	 1761
N17A	  322	 1766
RSSD	  344	 1768
T12A	  303	 1777
K20A	  332	 1781
L19A	  328	 1781
Q14A	  313	 1789
R13A	  309	 1793
M17A	  324	 1799
N16A	  321	 1799
V11A	  300	 1800
L18A	  326	 1801
P14A	  315	 1813
TCU	  322	 1815
U11A	  302	 1819
K19A	  331	 1820
O15A	  318	 1820
BAR	  288	 1824
S12A	  306	 1831
DUG	  317	 1837
Q13A	  311	 1841
T11A	  304	 1842
BW06	  329	 1849
R12A	  309	 1850
HWUT	  323	 1862
K18A	  328	 1862
L17A	  325	 1862
ACSO	   44	 1865
109C	  288	 1867
N15A	  319	 1867
P13A	  313	 1871
BLA	   56	 1884
L16A	  324	 1886
SPU	  320	 1893
U10A	  301	 1898
GSC	  297	 1899
BGU	  318	 1902
M15A	  321	 1904
S11A	  305	 1904
Q12A	  310	 1906
N14A	  318	 1907
J18A	  329	 1911
O13A	  315	 1912
K17A	  326	 1918
R11A	  307	 1926
AHID	  326	 1929
P12A	  312	 1937
L15A	  322	 1942
I18A	  331	 1945
Q11A	  309	 1957
J17A	  328	 1959
K16A	  326	 1961
M14A	  319	 1964
REDW	  328	 1967
SNOW	  328	 1970
AAM	   37	 1972
O12A	  314	 1974
LOHW	  329	 1975
N13A	  316	 1975
R10A	  306	 1979
MWC	  292	 1981
TPAW	  328	 1983
S10A	  305	 1984
RRI2	  327	 1990
L14A	  321	 1996
J16A	  326	 1999
I17A	  330	 2001
K15A	  324	 2003
DCID1	  328	 2004
Q10A	  308	 2013
IMW	  329	 2017
K14A	  322	 2030
O11A	  312	 2030
N12A	  315	 2031
ELK	  315	 2038
H17A	  330	 2043
I16A	  328	 2043
L13A	  320	 2044
LKWY	  331	 2050
OSI	  293	 2050
RLMT	  334	 2050
J15A	  325	 2054
ISA	  296	 2056
M12A	  317	 2060
P10A	  310	 2060
COWI	   20	 2061
N11A	  314	 2077
G18A	  334	 2081
K13A	  321	 2093
LAO	  342	 2095
SNCC	  289	 2097
O10A	  312	 2100
H16A	  330	 2103
I15A	  326	 2106
J14A	  323	 2110
L12A	  318	 2116
M11A	  316	 2120
N10A	  313	 2126
GLMI	   30	 2128
G17A	  332	 2133
F18A	  335	 2142
I14A	  325	 2154
J13A	  322	 2154
H15A	  327	 2166
L11A	  317	 2166
G16A	  330	 2176
M10A	  315	 2177
HLID	  322	 2181
F17A	  333	 2183
EYMN	   13	 2187
I13A	  324	 2191
G15A	  329	 2204
H14A	  326	 2204
L10A	  316	 2208
E18A	  336	 2213
F16A	  331	 2216
K11A	  318	 2225
DLMT	  329	 2226
DGMT	  348	 2232
I12A	  322	 2241
E17A	  334	 2243
H13A	  325	 2249
J11A	  320	 2256
G14A	  327	 2261
F15A	  330	 2262
D18A	  337	 2268
SDMD	   54	 2270
K10A	  317	 2280
H12A	  324	 2282
G13A	  326	 2290
D17A	  335	 2299
I11A	  321	 2300
F14A	  329	 2303
J10A	  319	 2317
E15A	  331	 2320
D16A	  334	 2325
MVL	   52	 2335
L08A	  314	 2343
EGMT	  338	 2346
SAO	  298	 2346
F13A	  327	 2351
M07A	  312	 2356
E14A	  330	 2361
H11A	  323	 2361
I10A	  320	 2364
D15A	  332	 2369
N06A	  309	 2372
J09A	  318	 2375
WVOR	  315	 2378
B18A	  338	 2383
K08A	  315	 2385
E13A	  329	 2398
F12A	  326	 2398
L07A	  313	 2403
I09A	  319	 2416
D14A	  331	 2418
MSO	  330	 2418
J08A	  317	 2424
G11A	  324	 2428
K07A	  314	 2436
C15A	  333	 2438
H09A	  321	 2458
B16A	  335	 2459
F11A	  325	 2459
D13A	  329	 2466
E12A	  327	 2468
A17A	  338	 2470
G10A	  322	 2470
BINY	   48	 2474
B15A	  334	 2485
E11A	  326	 2498
A16A	  336	 2504
D12A	  328	 2508
G09A	  322	 2508
MCCM	  300	 2510
H08A	  319	 2512
C13A	  330	 2521
F10A	  324	 2526
J06A	  315	 2531
I07A	  317	 2538
F09A	  322	 2547
K05A	  313	 2554
E10A	  325	 2558
D11A	  327	 2559
C12B	  329	 2568
PAL	   52	 2570
H07A	  318	 2574
G08A	  320	 2581
F08A	  322	 2605
D10A	  326	 2610
E09A	  324	 2619
A13A	  332	 2622
H06A	  318	 2633
B12A	  330	 2637
D09A	  324	 2669
C10A	  327	 2672
B11A	  329	 2673
G06A	  318	 2684
LTH	  322	 2690
HAWA	  322	 2692
HUMO	  311	 2697
NEW	  328	 2697
D08A	  324	 2703
B10A	  328	 2705
LONY	   44	 2710
A11A	  330	 2715
C09A	  326	 2722
E07A	  322	 2723
H04A	  316	 2753
B09A	  327	 2763
C08A	  325	 2764
D07A	  323	 2774
A10A	  329	 2777
E06A	  321	 2790
B08A	  326	 2822
COR	  315	 2824
D06A	  322	 2826
A09A	  328	 2829
F04A	  318	 2843
A08A	  327	 2864
LBNH	   47	 2872
B07A	  325	 2873
C06A	  323	 2879
D05A	  321	 2895
A07A	  326	 2931
B06A	  324	 2955
A05A	  324	 3023
PKME	   46	 3110

Waveform comparison for this mechanism

Since the analysis of the surface-wave radiation patterns uses only spectral amplitudes and because the surfave-wave radiation patterns have a 180 degree symmetry, each surface-wave solution consists of four possible focal mechanisms corresponding to the interchange of the P- and T-axes and a roation of the mechanism by 180 degrees. To select one mechanism, P-wave first motion can be used. This was not possible in this case because all the P-wave first motions were emergent ( a feature of the P-wave wave takeoff angle, the station location and the mechanism). The other way to select among the mechanisms is to compute forward synthetics and compare the observed and predicted waveforms.

The fits to the waveforms with the given mechanism are show below:

This figure shows the fit to the three components of motion (Z - vertical, R-radial and T - transverse). For each station and component, the observed traces is shown in red and the model predicted trace in blue. The traces represent filtered ground velocity in units of meters/sec (the peak value is printed adjacent to each trace; each pair of traces to plotted to the same scale to emphasize the difference in levels). Both synthetic and observed traces have been filtered using the SAC commands:

hp c 0.02 n 3
lp c 0.06 n 3

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Appendix A


Spectra fit plots to each station

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:


Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Mon Apr 7 14:38:13 CDT 2008

Last Changed 2008/04/07