Location

2008/04/01 13:16:17 41.224 -114.826 7.6 4.2 Nevada

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 SLU Moment Tensor Solution
 2008/04/01 13:16:17 41.224 -114.826 7.6 4.2 Nevada
 
 Best Fitting Double Couple
    Mo = 1.91e+22 dyne-cm
    Mw = 4.12 
    Z  = 12 km
     Plane   Strike  Dip  Rake
      NP1      185    79   -139
      NP2       85    50   -15
 Principal Axes:
   Axis    Value   Plunge  Azimuth
     T   1.91e+22     18     309
     N   0.00e+00     48     198
     P  -1.91e+22     36      53



 Moment Tensor: (dyne-cm)
    Component  Value
       Mxx     2.37e+21
       Mxy    -1.43e+22
       Mxz    -1.88e+21
       Myy     2.49e+21
       Myz    -1.17e+22
       Mzz    -4.86e+21
                                                     
                                                     
                                                     
                                                     
                     ########------                  
                 ###########-----------              
              ##############--------------           
             ##############----------------          
           ##   ###########------------------        
          ### T ##########-----------   ------       
         ####   ##########----------- P -------      
        ##################-----------   --------     
        ##################----------------------     
       ##################------------------------    
       ##################-----------------------#    
       ##################----------------------##    
       -#################--------------------####    
        --###############------------------#####     
        ----#############----------------#######     
         -------#########------------##########      
          ---------------#####################       
           --------------####################        
             ------------##################          
              -----------#################           
                 ---------#############              
                     -----#########                  
                                                     
                                                     
                                                     

 Harvard Convention
 Moment Tensor:
      R          T          F
 -4.86e+21  -1.88e+21   1.17e+22 
 -1.88e+21   2.37e+21   1.43e+22 
  1.17e+22   1.43e+22   2.49e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080401131617/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 85
      DIP = 50
     RAKE = -15
       MW = 4.12
       HS = 12.0

Good fits are obtained with the two techniques. The southward dipping nodal plane striking East is common to both. The waveform solution fits the surface-wave radiations patterns slightly less than the surface-wave solution. On the other hand the surface wave solution can provide an acceptable fit to the waveforms. The difference between the goodness of fit parameter for the best waveform solutiona nd the surface-wave solution is about 0.03, which is not significant. We accept the waveform solution here. Using a sligltly lower frequency band for the waveform search might reconcile the slight differences.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 SLU Moment Tensor Solution
 2008/04/01 13:16:17 41.224 -114.826 7.6 4.2 Nevada
 
 Best Fitting Double Couple
    Mo = 1.91e+22 dyne-cm
    Mw = 4.12 
    Z  = 12 km
     Plane   Strike  Dip  Rake
      NP1      185    79   -139
      NP2       85    50   -15
 Principal Axes:
   Axis    Value   Plunge  Azimuth
     T   1.91e+22     18     309
     N   0.00e+00     48     198
     P  -1.91e+22     36      53



 Moment Tensor: (dyne-cm)
    Component  Value
       Mxx     2.37e+21
       Mxy    -1.43e+22
       Mxz    -1.88e+21
       Myy     2.49e+21
       Myz    -1.17e+22
       Mzz    -4.86e+21
                                                     
                                                     
                                                     
                                                     
                     ########------                  
                 ###########-----------              
              ##############--------------           
             ##############----------------          
           ##   ###########------------------        
          ### T ##########-----------   ------       
         ####   ##########----------- P -------      
        ##################-----------   --------     
        ##################----------------------     
       ##################------------------------    
       ##################-----------------------#    
       ##################----------------------##    
       -#################--------------------####    
        --###############------------------#####     
        ----#############----------------#######     
         -------#########------------##########      
          ---------------#####################       
           --------------####################        
             ------------##################          
              -----------#################           
                 ---------#############              
                     -----#########                  
                                                     
                                                     
                                                     

 Harvard Convention
 Moment Tensor:
      R          T          F
 -4.86e+21  -1.88e+21   1.17e+22 
 -1.88e+21   2.37e+21   1.43e+22 
  1.17e+22   1.43e+22   2.49e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080401131617/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   215    45   -90   3.69 0.2912
WVFGRD96    1.0   250    55   -40   3.68 0.2575
WVFGRD96    2.0   225    45   -75   3.87 0.3401
WVFGRD96    3.0   260    55   -20   3.85 0.3402
WVFGRD96    4.0    95    45    15   3.91 0.3877
WVFGRD96    5.0    95    45    15   3.94 0.4329
WVFGRD96    6.0    95    50    15   3.96 0.4718
WVFGRD96    7.0    90    55    15   3.99 0.5047
WVFGRD96    8.0    80    40   -25   4.06 0.5409
WVFGRD96    9.0    85    45   -15   4.07 0.5616
WVFGRD96   10.0    85    50   -15   4.09 0.5753
WVFGRD96   11.0    85    50   -15   4.11 0.5830
WVFGRD96   12.0    85    50   -15   4.12 0.5842
WVFGRD96   14.0    85    55   -15   4.15 0.5649
WVFGRD96   15.0    85    55   -15   4.16 0.5542
WVFGRD96   16.0    85    55   -15   4.17 0.5402
WVFGRD96   17.0    85    55   -15   4.18 0.5238
WVFGRD96   18.0    85    55   -15   4.19 0.5059
WVFGRD96   19.0    85    55   -15   4.20 0.4866
WVFGRD96   20.0    85    55   -15   4.20 0.4667
WVFGRD96   21.0    85    55   -15   4.21 0.4474
WVFGRD96   22.0    85    55   -15   4.22 0.4274
WVFGRD96   23.0    85    55   -10   4.22 0.4077
WVFGRD96   24.0    85    55   -10   4.23 0.3887
WVFGRD96   25.0    85    55   -10   4.23 0.3700
WVFGRD96   26.0    85    55   -10   4.23 0.3519
WVFGRD96   27.0    85    55   -10   4.24 0.3346
WVFGRD96   28.0    85    55   -10   4.24 0.3183
WVFGRD96   29.0    85    55   -10   4.24 0.3031
WVFGRD96   13.0    85    55   -15   4.14 0.5811

The best solution is

WVFGRD96   12.0    85    50   -15   4.12 0.5842

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for depth of 8 km
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Surface-Wave Focal Mechanism

The following figure shows the stations used in the grid search for the best focal mechanism to fit the surface-wave spectral amplitudes of the Love and Rayleigh waves.
Location of broadband stations used to obtain focal mechanism from surface-wave spectral amplitudes

The surface-wave determined focal mechanism is shown here.


  NODAL PLANES 

  
  STK=     344.64
  DIP=      67.48
 RAKE=     135.90
  
             OR
  
  STK=      94.99
  DIP=      50.00
 RAKE=      30.00
 
 
DEPTH = 9.0 km
 
Mw = 4.17
Best Fit 0.9105 - P-T axis plot gives solutions with FIT greater than FIT90

First motion data

The P-wave first motion data for focal mechanism studies are as follow:

Sta Az(deg)    Dist(km)   First motion

Surface-wave analysis

Surface wave analysis was performed using codes from Computer Programs in Seismology, specifically the multiple filter analysis program do_mft and the surface-wave radiation pattern search program srfgrd96.

Data preparation

Digital data were collected, instrument response removed and traces converted to Z, R an T components. Multiple filter analysis was applied to the Z and T traces to obtain the Rayleigh- and Love-wave spectral amplitudes, respectively. These were input to the search program which examined all depths between 1 and 25 km and all possible mechanisms.
Best mechanism fit as a function of depth. The preferred depth is given above. Lower hemisphere projection

Pressure-tension axis trends. Since the surface-wave spectra search does not distinguish between P and T axes and since there is a 180 ambiguity in strike, all possible P and T axes are plotted. First motion data and waveforms will be used to select the preferred mechanism. The purpose of this plot is to provide an idea of the possible range of solutions. The P and T-axes for all mechanisms with goodness of fit greater than 0.9 FITMAX (above) are plotted here.


Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the Love and Rayleigh wave radiation patterns. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. Because of the symmetry of the spectral amplitude rediation patterns, only strikes from 0-180 degrees are sampled.

Love-wave radiation patterns

Rayleigh-wave radiation patterns

Broadband station distribution

The distribution of broadband stations with azimuth and distance is

Sta Az(deg)    Dist(km)   
M10A	  284	  142
HVU	   67	  180
SPU	   85	  195
K11A	  331	  196
DUG	  122	  198
P11A	  202	  200
N15A	  100	  202
K14A	   44	  204
M15A	   82	  206
P13A	  159	  210
M09A	  277	  216
P10A	  217	  223
L15A	   67	  226
O15A	  116	  229
NOQ	  103	  231
K10A	  317	  238
P14A	  139	  238
Q12A	  179	  243
L09A	  292	  248
K15A	   50	  254
J11A	  343	  255
J14A	   25	  259
CTU	  101	  260
Q13A	  163	  263
NLU	  120	  265
HLID	    6	  268
Q11A	  194	  272
HWUT	   79	  273
Q14A	  151	  284
K09A	  306	  287
P15A	  129	  288
J10A	  328	  290
N16A	   96	  292
M08A	  276	  293
MPU	  115	  295
Q10A	  206	  296
L16A	   72	  301
I13A	   12	  305
L08A	  292	  307
O16A	  110	  307
I11A	  344	  311
J15A	   39	  315
I14A	   21	  323
R12A	  176	  323
R11A	  191	  325
K16A	   56	  326
P16A	  122	  327
Q15A	  138	  327
J09A	  316	  334
K08A	  300	  342
N17A	   94	  342
R13A	  167	  347
L17A	   72	  348
R10A	  201	  348
WVOR	  295	  351
AHID	   58	  352
M17A	   84	  354
I10A	  334	  355
M07A	  274	  359
R14A	  153	  362
I15A	   32	  366
H12A	    0	  369
O17A	  107	  369
K17A	   61	  370
RRI2	   48	  374
H13A	    8	  375
J08A	  310	  379
L07A	  285	  381
I09A	  324	  385
S10A	  202	  395
K07A	  296	  396
H11A	  347	  397
H14A	   18	  397
DCID1	   46	  400
P17A	  118	  402
S12A	  180	  402
H10A	  338	  403
R15A	  145	  403
M18A	   85	  404
S11A	  191	  404
REDW	   52	  405
I16A	   42	  406
Q16A	  128	  407
TPAW	   49	  407
L18A	   78	  412
S14A	  158	  412
S13A	  167	  414
J17A	   54	  418
SNOW	   51	  418
CCUT	  163	  419
H15A	   25	  419
N06A	  264	  420
I08A	  316	  425
O18A	  103	  425
SRU	  121	  428
K18A	   67	  431
G13A	    7	  433
J07A	  305	  436
IMW	   45	  437
LOHW	   50	  438
R16A	  137	  438
N18A	   92	  439
T11A	  184	  443
H09A	  330	  444
J18A	   60	  458
BMO	  334	  459
G14A	   14	  461
I17A	   48	  463
BW06	   66	  467
Q18A	  119	  468
L19A	   76	  471
R17A	  130	  474
T13A	  169	  474
G11A	  347	  477
G15A	   23	  479
H08A	  321	  479
M19A	   84	  480
N19A	   92	  481
G10A	  339	  487
H16A	   36	  487
T14A	  161	  488
J06A	  299	  489
I07A	  312	  494
O19A	  100	  497
DLMT	   20	  499
I18A	   55	  499
T12A	  178	  500
F12A	  357	  504
G09A	  333	  508
F13A	    5	  509
G16A	   28	  510
T15A	  154	  515
LKWY	   42	  520
F14A	   13	  524
K05A	  290	  525
F11A	  349	  528
K19A	   68	  531
P19A	  108	  531
R18A	  125	  531
S17A	  137	  531
U12A	  177	  533
U11A	  185	  535
U13A	  171	  540
Q19A	  116	  542
F15A	   20	  548
U10A	  194	  548
L20A	   79	  552
T16A	  147	  554
U14A	  164	  554
F09A	  335	  555
BOZ	   26	  559
N20A	   92	  559
F10A	  341	  560
G08A	  325	  560
M20A	   85	  561
K20A	   72	  565
G17A	   35	  566
F16A	   26	  571
O20A	  100	  574
S18A	  131	  575
U15A	  156	  578
E11A	  350	  580
E13A	    5	  582
R19A	  122	  582
P20A	  107	  584
T17A	  142	  587
E14A	   10	  588
H06A	  313	  591
F08A	  330	  597
V11A	  185	  600
E15A	   17	  605
V12A	  180	  610
E10A	  344	  611
Q20A	  112	  616
F17A	   32	  622
N21A	   92	  622
G18A	   42	  627
RLMT	   44	  627
S19A	  126	  627
T18A	  135	  627
M21A	   84	  630
U17A	  143	  631
L21A	   80	  632
MSO	    6	  633
RWWY	   82	  635
O21A	   98	  636
V14A	  165	  640
E09A	  337	  643
E16A	   22	  644
G06A	  316	  645
V15A	  158	  645
R20A	  119	  652
U16A	  149	  652
D13A	    3	  653
D11A	  350	  657
W12A	  180	  658
P21A	  104	  659
D14A	    9	  660
E17A	   28	  666
F18A	   37	  667
LDF	  183	  671
D15A	   16	  673
D10A	  344	  675
GSC	  196	  675
Q21A	  111	  678
W13A	  172	  686
W14A	  166	  686
U18A	  139	  688
ISA	  209	  691
M22A	   86	  694
WUAZ	  154	  694
HAWA	  328	  695
LTH	  329	  697
MVCO	  127	  697
D16A	   21	  698
HUMO	  286	  698
SMCO	  106	  700
R21A	  114	  703
D09A	  338	  704
T19A	  132	  704
H04A	  305	  708
W15A	  160	  709
E07A	  328	  714
E18A	   32	  715
V17A	  149	  717
C13A	    2	  718
C12B	  356	  722
D08A	  335	  724
S21A	  121	  727
Q22A	  108	  729
C14A	    7	  733
U19A	  136	  737
D17A	   26	  739
W16A	  156	  741
X13A	  172	  742
V18A	  143	  749
C15A	   13	  750
SAO	  232	  757
C10A	  346	  758
G04A	  308	  759
E06A	  322	  767
X14A	  166	  770
U20A	  132	  771
C16A	   18	  772
MCCM	  247	  772
R22A	  113	  772
D07A	  330	  778
D18A	   30	  778
C09A	  341	  779
PHWY	   86	  781
X15A	  162	  783
C17A	   23	  784
ISCO	   98	  791
COR	  301	  793
V19A	  138	  796
C08A	  337	  800
F04A	  313	  802
OSI	  207	  806
B12A	  356	  807
B10A	  348	  808
B15A	   12	  809
B11A	  352	  810
NEW	  348	  810
W18A	  145	  814
X16A	  157	  814
V20A	  135	  822
MWC	  202	  823
Y14A	  168	  826
C07A	  332	  828
Y13A	  173	  828
Y12C	  178	  830
W19A	  143	  832
T22A	  122	  833
B16A	   16	  837
Y15A	  164	  838
B09A	  343	  840
X17A	  154	  845
B17A	   21	  849
A12A	  356	  859
EGMT	   26	  860
X18A	  148	  860
A11A	  353	  867
B08A	  338	  867
A14A	    7	  869
Y16A	  159	  869
D05A	  322	  872
V21A	  131	  872
F03A	  310	  873
A15A	   10	  878
W20A	  138	  878
SDCO	  112	  883
C06A	  329	  884
A10A	  347	  887
Z14A	  168	  889
B18A	   25	  893
A16A	   16	  896
Z13A	  173	  897
GLA	  180	  901
X19A	  145	  901
B07A	  335	  904
A09A	  343	  909
Y17A	  156	  909
E03A	  313	  913
Z15A	  164	  913
A17A	   20	  919
A08A	  340	  925
Z16A	  160	  927
W21A	  135	  928
X20A	  141	  930
RSSD	   66	  939
113A	  174	  944
109C	  193	  946
Y19A	  147	  947
114A	  169	  957
B06A	  330	  963
Z17A	  155	  963
112A	  178	  965
A07A	  336	  970
SNCC	  207	  974
X21A	  138	  977
W22A	  132	  979
Y20A	  143	  994
Z18A	  153	 1000
116A	  163	 1002
ANMO	  131	 1004
Z19A	  149	 1011
Y21A	  139	 1022
117A	  158	 1029
A05A	  329	 1032
214A	  169	 1045
TUC	  159	 1045
Y22D	  136	 1059
Z20A	  146	 1059
119A	  150	 1062
216A	  162	 1068
OGNE	   87	 1070
Z21A	  142	 1086
217A	  160	 1110
120A	  148	 1112
218A	  156	 1114
121A	  144	 1153
DGMT	   42	 1164
318A	  156	 1171
122A	  141	 1177
220A	  149	 1180
221A	  146	 1203
319A	  154	 1203
222A	  143	 1227
320A	  151	 1236
223A	  141	 1271
CBKS	   97	 1309
224A	  138	 1314
125A	  133	 1315
AMTX	  117	 1342
MNTX	  138	 1345
225A	  135	 1352
126A	  131	 1356
324A	  139	 1373
127A	  129	 1396
226A	  133	 1399
325A	  138	 1408
326A	  135	 1470
327A	  133	 1495
ECSD	   73	 1518
426A	  137	 1524
427A	  134	 1545
KSU1	   92	 1562
WMOK	  112	 1573
526A	  138	 1575
527A	  137	 1595
428A	  133	 1599
626A	  140	 1619
528A	  135	 1642
627A	  138	 1670
JCT	  127	 1794
MIAR	  105	 1998
JFWS	   76	 2033
CCM	  247	 2043
NATX	  114	 2076
HKT	  120	 2112
HDIL	   83	 2142
KVTX	  129	 2159
OXF	  100	 2342
WCI	   88	 2453
TZTN	   90	 2743
GOGA	   97	 2888

Waveform comparison for this mechanism

Since the analysis of the surface-wave radiation patterns uses only spectral amplitudes and because the surfave-wave radiation patterns have a 180 degree symmetry, each surface-wave solution consists of four possible focal mechanisms corresponding to the interchange of the P- and T-axes and a roation of the mechanism by 180 degrees. To select one mechanism, P-wave first motion can be used. This was not possible in this case because all the P-wave first motions were emergent ( a feature of the P-wave wave takeoff angle, the station location and the mechanism). The other way to select among the mechanisms is to compute forward synthetics and compare the observed and predicted waveforms.

The fits to the waveforms with the given mechanism are show below:

This figure shows the fit to the three components of motion (Z - vertical, R-radial and T - transverse). For each station and component, the observed traces is shown in red and the model predicted trace in blue. The traces represent filtered ground velocity in units of meters/sec (the peak value is printed adjacent to each trace; each pair of traces to plotted to the same scale to emphasize the difference in levels). Both synthetic and observed traces have been filtered using the SAC commands:

hp c 0.02 n 3
lp c 0.10 n 3

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Appendix A


Spectra fit plots to each station

Velocity Model

The VMODEL used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Wed Apr 2 13:17:47 CDT 2008

Last Changed 2008/04/01