USGS/SLU Moment Tensor Solution ENS 2008/03/25 11:59:38:0 44.70 -110.05 0.2 4.1 Wyoming Stations used: IW.DCID1 IW.DLMT IW.IMW IW.LOHW IW.REDW IW.RRI2 IW.SNOW IW.TPAW TA.A11A TA.A12A TA.A14A TA.A15A TA.A16A TA.A17A TA.B10A TA.B11A TA.B12A TA.B15A TA.B16A TA.B17A TA.B18A TA.C10A TA.C12B TA.C13A TA.C14A TA.C15A TA.C16A TA.C17A TA.D10A TA.D11A TA.D12A TA.D13A TA.D14A TA.D15A TA.D16A TA.D17A TA.D18A TA.E09A TA.E10A TA.E11A TA.E13A TA.E14A TA.E15A TA.E16A TA.E17A TA.E18A TA.F08A TA.F09A TA.F10A TA.F11A TA.F13A TA.F14A TA.F15A TA.F16A TA.F17A TA.F18A TA.G09A TA.G10A TA.G11A TA.G13A TA.G14A TA.G15A TA.G16A TA.G17A TA.G18A TA.H08A TA.H09A TA.H11A TA.H12A TA.H13A TA.H15A TA.H16A TA.I08A TA.I09A TA.I11A TA.I12A TA.I13A TA.I15A TA.I16A TA.I18A TA.J10A TA.J12A TA.J13A TA.J17A TA.J18A TA.K12A TA.K13A TA.K14A TA.K15A TA.K16A TA.K17A TA.K18A TA.K19A TA.K20A TA.L14A TA.L15A TA.L16A TA.L19A TA.L20A TA.L21A TA.M12A TA.M13A TA.M14A TA.M15A TA.M16A TA.M17A TA.M18A TA.M20A TA.M21A TA.M22A TA.N11A TA.N12A TA.N13A TA.N14A TA.N15A TA.N16A TA.N17A TA.N20A TA.N22A TA.O12A TA.O13A TA.O16A TA.O17A TA.O18A TA.P13A TA.P15A TA.P16A TA.P18A US.AHID US.BOZ US.BW06 US.EGMT US.HLID US.LAO US.MSO US.RLMT UU.BGU UU.SPU Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.025 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 2.69e+22 dyne-cm Mw = 4.22 Z = 14 km Plane Strike Dip Rake NP1 111 64 -146 NP2 5 60 -30 Principal Axes: Axis Value Plunge Azimuth T 2.69e+22 3 237 N 0.00e+00 49 144 P -2.69e+22 41 330 Moment Tensor: (dyne-cm) Component Value Mxx -3.42e+21 Mxy 1.89e+22 Mxz -1.22e+22 Myy 1.51e+22 Myz 5.69e+21 Mzz -1.17e+22 ----------#### ---------------####### -------------------######### ---------------------######### --------- ------------########## ---------- P ------------########### ----------- ------------############ #---------------------------############ ##--------------------------############ #####------------------------############# #######----------------------############# #########--------------------############# ############----------------############## ##############-------------############# ###################--------############# #################################-- T #####################------------- #####################------------ ###################----------- #################----------- ############---------- #######------- Global CMT Convention Moment Tensor: R T P -1.17e+22 -1.22e+22 -5.69e+21 -1.22e+22 -3.42e+21 -1.89e+22 -5.69e+21 -1.89e+22 1.51e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080325115938/index.html |
STK = 5 DIP = 60 RAKE = -30 MW = 4.22 HS = 14.0
The NDK file is 20080325115938.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2008/03/25 11:59:38:0 44.70 -110.05 0.2 4.1 Wyoming Stations used: IW.DCID1 IW.DLMT IW.IMW IW.LOHW IW.REDW IW.RRI2 IW.SNOW IW.TPAW TA.A11A TA.A12A TA.A14A TA.A15A TA.A16A TA.A17A TA.B10A TA.B11A TA.B12A TA.B15A TA.B16A TA.B17A TA.B18A TA.C10A TA.C12B TA.C13A TA.C14A TA.C15A TA.C16A TA.C17A TA.D10A TA.D11A TA.D12A TA.D13A TA.D14A TA.D15A TA.D16A TA.D17A TA.D18A TA.E09A TA.E10A TA.E11A TA.E13A TA.E14A TA.E15A TA.E16A TA.E17A TA.E18A TA.F08A TA.F09A TA.F10A TA.F11A TA.F13A TA.F14A TA.F15A TA.F16A TA.F17A TA.F18A TA.G09A TA.G10A TA.G11A TA.G13A TA.G14A TA.G15A TA.G16A TA.G17A TA.G18A TA.H08A TA.H09A TA.H11A TA.H12A TA.H13A TA.H15A TA.H16A TA.I08A TA.I09A TA.I11A TA.I12A TA.I13A TA.I15A TA.I16A TA.I18A TA.J10A TA.J12A TA.J13A TA.J17A TA.J18A TA.K12A TA.K13A TA.K14A TA.K15A TA.K16A TA.K17A TA.K18A TA.K19A TA.K20A TA.L14A TA.L15A TA.L16A TA.L19A TA.L20A TA.L21A TA.M12A TA.M13A TA.M14A TA.M15A TA.M16A TA.M17A TA.M18A TA.M20A TA.M21A TA.M22A TA.N11A TA.N12A TA.N13A TA.N14A TA.N15A TA.N16A TA.N17A TA.N20A TA.N22A TA.O12A TA.O13A TA.O16A TA.O17A TA.O18A TA.P13A TA.P15A TA.P16A TA.P18A US.AHID US.BOZ US.BW06 US.EGMT US.HLID US.LAO US.MSO US.RLMT UU.BGU UU.SPU Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.025 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 2.69e+22 dyne-cm Mw = 4.22 Z = 14 km Plane Strike Dip Rake NP1 111 64 -146 NP2 5 60 -30 Principal Axes: Axis Value Plunge Azimuth T 2.69e+22 3 237 N 0.00e+00 49 144 P -2.69e+22 41 330 Moment Tensor: (dyne-cm) Component Value Mxx -3.42e+21 Mxy 1.89e+22 Mxz -1.22e+22 Myy 1.51e+22 Myz 5.69e+21 Mzz -1.17e+22 ----------#### ---------------####### -------------------######### ---------------------######### --------- ------------########## ---------- P ------------########### ----------- ------------############ #---------------------------############ ##--------------------------############ #####------------------------############# #######----------------------############# #########--------------------############# ############----------------############## ##############-------------############# ###################--------############# #################################-- T #####################------------- #####################------------ ###################----------- #################----------- ############---------- #######------- Global CMT Convention Moment Tensor: R T P -1.17e+22 -1.22e+22 -5.69e+21 -1.22e+22 -3.42e+21 -1.89e+22 -5.69e+21 -1.89e+22 1.51e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080325115938/index.html |
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.025 n 3 lp c 0.05 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 220 45 60 3.98 0.3651 WVFGRD96 2.0 215 50 55 4.06 0.4281 WVFGRD96 3.0 30 55 50 4.10 0.4455 WVFGRD96 4.0 25 55 40 4.11 0.4417 WVFGRD96 5.0 15 55 5 4.10 0.4444 WVFGRD96 6.0 10 55 -10 4.11 0.4556 WVFGRD96 7.0 10 55 -10 4.13 0.4645 WVFGRD96 8.0 10 50 -10 4.17 0.4679 WVFGRD96 9.0 5 50 -20 4.18 0.4722 WVFGRD96 10.0 5 55 -25 4.19 0.4796 WVFGRD96 11.0 5 60 -30 4.20 0.4861 WVFGRD96 12.0 5 60 -30 4.21 0.4911 WVFGRD96 13.0 5 60 -30 4.21 0.4942 WVFGRD96 14.0 5 60 -30 4.22 0.4952 WVFGRD96 15.0 5 60 -35 4.23 0.4946 WVFGRD96 16.0 5 65 -35 4.23 0.4934 WVFGRD96 17.0 5 65 -35 4.24 0.4907 WVFGRD96 18.0 5 65 -35 4.24 0.4870 WVFGRD96 19.0 5 70 -35 4.25 0.4831 WVFGRD96 20.0 5 70 -35 4.26 0.4795 WVFGRD96 21.0 5 70 -35 4.27 0.4744 WVFGRD96 22.0 5 70 -35 4.27 0.4695 WVFGRD96 23.0 5 70 -35 4.28 0.4643 WVFGRD96 24.0 5 70 -35 4.28 0.4588 WVFGRD96 25.0 5 70 -35 4.29 0.4529 WVFGRD96 26.0 5 70 -35 4.29 0.4468 WVFGRD96 27.0 10 75 -35 4.30 0.4406 WVFGRD96 28.0 10 75 -35 4.30 0.4345 WVFGRD96 29.0 10 75 -35 4.31 0.4283
The best solution is
WVFGRD96 14.0 5 60 -30 4.22 0.4952
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.025 n 3 lp c 0.05 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: