2008/02/21 14:16:05 41.076 -114.771 10.0 6.3 Nevada
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2008/02/21 14:16:05:0 41.08 -114.77 10.0 6.3 Nevada Stations used: IW.DCID1 IW.IMW IW.LOHW IW.MOOW IW.REDW IW.RRI2 IW.SNOW IW.TPAW NN.BEK NN.WCN TA.G13A TA.G14A TA.G15A TA.H08A TA.H09A TA.H10A TA.H11A TA.H12A TA.H13A TA.H15A TA.H16A TA.I08A TA.I09A TA.I11A TA.I12A TA.I13A TA.I14A TA.I15A TA.I16A TA.I17A TA.J07A TA.J08A TA.J10A TA.J11A TA.J12A TA.J13A TA.J14A TA.J15A TA.J16A TA.J17A TA.J18A TA.K07A TA.K08A TA.K09A TA.K10A TA.K12A TA.K13A TA.K14A TA.K15A TA.K16A TA.K17A TA.K18A TA.L07A TA.L08A TA.L09A TA.L10A TA.L11A TA.L12A TA.L13A TA.L14A TA.L15A TA.L16A TA.L17A TA.L18A TA.L19A TA.M07A TA.M09A TA.M10A TA.M11A TA.M13A TA.M14A TA.M15A TA.M16A TA.M17A TA.M18A TA.M19A TA.N06A TA.N07B TA.N08A TA.N09A TA.N10A TA.N11A TA.N13A TA.N14A TA.N15A TA.N16A TA.N17A TA.O06A TA.O07A TA.O08A TA.O09A TA.O10A TA.O11A TA.O12A TA.O13A TA.O15A TA.O17A TA.O18A TA.O19A TA.P06A TA.P07A TA.P08A TA.P09A TA.P10A TA.P11A TA.P12A TA.P14A TA.P15A TA.P16A TA.P17A TA.P18A TA.Q07A TA.Q08A TA.Q09A TA.Q10A TA.Q11A TA.Q12A TA.Q13A TA.Q14A TA.Q15A TA.Q16A TA.R06C TA.R08A TA.R09A TA.R10A TA.R11A TA.R12A TA.R13A TA.R14A TA.R15A TA.R16A TA.R17A TA.S09A TA.S10A TA.S11A TA.S12A TA.S13A TA.S14A TA.S15A TA.T11A TA.T12A TA.T13A TA.T14A TA.T15A US.AHID US.BMO US.BW06 US.DUG US.ELK US.HLID US.WVOR UU.SRU Filtering commands used: hp c 0.01 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 8.91e+24 dyne-cm Mw = 5.90 Z = 11 km Plane Strike Dip Rake NP1 205 50 -95 NP2 33 40 -84 Principal Axes: Axis Value Plunge Azimuth T 8.91e+24 5 299 N 0.00e+00 4 208 P -8.91e+24 84 80 Moment Tensor: (dyne-cm) Component Value Mxx 2.02e+24 Mxy -3.73e+24 Mxz 1.99e+23 Myy 6.73e+24 Myz -1.61e+24 Mzz -8.74e+24 ############## ###############------- ##############------------## #############---------------## ############------------------### T ###########-------------------#### #########---------------------##### ############----------------------###### ###########-----------------------###### ###########------------ ---------####### ###########------------ P ---------####### ##########------------- --------######## ##########-----------------------######### ########------------------------######## ########-----------------------######### #######---------------------########## ######--------------------########## #####------------------########### ####--------------############ ####----------############## #----################# ############## Global CMT Convention Moment Tensor: R T P -8.74e+24 1.99e+23 1.61e+24 1.99e+23 2.02e+24 3.73e+24 1.61e+24 3.73e+24 6.73e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080221141605/index.html |
STK = 205 DIP = 50 RAKE = -95 MW = 5.90 HS = 11.0
The NDK file is 20080221141605.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2008/02/21 14:16:05:0 41.08 -114.77 10.0 6.3 Nevada Stations used: IW.DCID1 IW.IMW IW.LOHW IW.MOOW IW.REDW IW.RRI2 IW.SNOW IW.TPAW NN.BEK NN.WCN TA.G13A TA.G14A TA.G15A TA.H08A TA.H09A TA.H10A TA.H11A TA.H12A TA.H13A TA.H15A TA.H16A TA.I08A TA.I09A TA.I11A TA.I12A TA.I13A TA.I14A TA.I15A TA.I16A TA.I17A TA.J07A TA.J08A TA.J10A TA.J11A TA.J12A TA.J13A TA.J14A TA.J15A TA.J16A TA.J17A TA.J18A TA.K07A TA.K08A TA.K09A TA.K10A TA.K12A TA.K13A TA.K14A TA.K15A TA.K16A TA.K17A TA.K18A TA.L07A TA.L08A TA.L09A TA.L10A TA.L11A TA.L12A TA.L13A TA.L14A TA.L15A TA.L16A TA.L17A TA.L18A TA.L19A TA.M07A TA.M09A TA.M10A TA.M11A TA.M13A TA.M14A TA.M15A TA.M16A TA.M17A TA.M18A TA.M19A TA.N06A TA.N07B TA.N08A TA.N09A TA.N10A TA.N11A TA.N13A TA.N14A TA.N15A TA.N16A TA.N17A TA.O06A TA.O07A TA.O08A TA.O09A TA.O10A TA.O11A TA.O12A TA.O13A TA.O15A TA.O17A TA.O18A TA.O19A TA.P06A TA.P07A TA.P08A TA.P09A TA.P10A TA.P11A TA.P12A TA.P14A TA.P15A TA.P16A TA.P17A TA.P18A TA.Q07A TA.Q08A TA.Q09A TA.Q10A TA.Q11A TA.Q12A TA.Q13A TA.Q14A TA.Q15A TA.Q16A TA.R06C TA.R08A TA.R09A TA.R10A TA.R11A TA.R12A TA.R13A TA.R14A TA.R15A TA.R16A TA.R17A TA.S09A TA.S10A TA.S11A TA.S12A TA.S13A TA.S14A TA.S15A TA.T11A TA.T12A TA.T13A TA.T14A TA.T15A US.AHID US.BMO US.BW06 US.DUG US.ELK US.HLID US.WVOR UU.SRU Filtering commands used: hp c 0.01 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 8.91e+24 dyne-cm Mw = 5.90 Z = 11 km Plane Strike Dip Rake NP1 205 50 -95 NP2 33 40 -84 Principal Axes: Axis Value Plunge Azimuth T 8.91e+24 5 299 N 0.00e+00 4 208 P -8.91e+24 84 80 Moment Tensor: (dyne-cm) Component Value Mxx 2.02e+24 Mxy -3.73e+24 Mxz 1.99e+23 Myy 6.73e+24 Myz -1.61e+24 Mzz -8.74e+24 ############## ###############------- ##############------------## #############---------------## ############------------------### T ###########-------------------#### #########---------------------##### ############----------------------###### ###########-----------------------###### ###########------------ ---------####### ###########------------ P ---------####### ##########------------- --------######## ##########-----------------------######### ########------------------------######## ########-----------------------######### #######---------------------########## ######--------------------########## #####------------------########### ####--------------############ ####----------############## #----################# ############## Global CMT Convention Moment Tensor: R T P -8.74e+24 1.99e+23 1.61e+24 1.99e+23 2.02e+24 3.73e+24 1.61e+24 3.73e+24 6.73e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20080221141605/index.html USGS/SLU Moment Tensor Solution ENS 2008/21/14 16:05:00:0 0.08 -114.77 10.0 6.3 Nevada Stations used: IW.DCID1 IW.IMW IW.LOHW IW.MOOW IW.REDW IW.RRI2 IW.SNOW IW.TPAW NN.BEK NN.WCN TA.G13A TA.G14A TA.G15A TA.H08A TA.H09A TA.H10A TA.H11A TA.H12A TA.H13A TA.H15A TA.H16A TA.I08A TA.I09A TA.I11A TA.I12A TA.I13A TA.I14A TA.I15A TA.I16A TA.I17A TA.J07A TA.J08A TA.J10A TA.J11A TA.J12A TA.J13A TA.J14A TA.J15A TA.J16A TA.J17A TA.J18A TA.K07A TA.K08A TA.K09A TA.K10A TA.K12A TA.K13A TA.K14A TA.K15A TA.K16A TA.K17A TA.K18A TA.L07A TA.L08A TA.L09A TA.L10A TA.L11A TA.L12A TA.L13A TA.L14A TA.L15A TA.L16A TA.L17A TA.L18A TA.L19A TA.M07A TA.M09A TA.M10A TA.M11A TA.M13A TA.M14A TA.M15A TA.M16A TA.M17A TA.M18A TA.M19A TA.N06A TA.N07B TA.N08A TA.N09A TA.N10A TA.N11A TA.N13A TA.N14A TA.N15A TA.N16A TA.N17A TA.O06A TA.O07A TA.O08A TA.O09A TA.O10A TA.O11A TA.O12A TA.O13A TA.O15A TA.O17A TA.O18A TA.O19A TA.P06A TA.P07A TA.P08A TA.P09A TA.P10A TA.P11A TA.P12A TA.P14A TA.P15A TA.P16A TA.P17A TA.P18A TA.Q07A TA.Q08A TA.Q09A TA.Q10A TA.Q11A TA.Q12A TA.Q13A TA.Q14A TA.Q15A TA.Q16A TA.R06C TA.R08A TA.R09A TA.R10A TA.R11A TA.R12A TA.R13A TA.R14A TA.R15A TA.R16A TA.R17A TA.S09A TA.S10A TA.S11A TA.S12A TA.S13A TA.S14A TA.S15A TA.T11A TA.T12A TA.T13A TA.T14A TA.T15A US.AHID US.BMO US.BW06 US.DUG US.ELK US.HLID US.WVOR UU.SRU Filtering commands used: hp c 0.01 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 8.91e+24 dyne-cm Mw = 5.90 Z = 11 km Plane Strike Dip Rake NP1 205 50 -95 NP2 33 40 -84 Principal Axes: Axis Value Plunge Azimuth T 8.91e+24 5 299 N 0.00e+00 4 208 P -8.91e+24 84 80 Moment Tensor: (dyne-cm) Component Value Mxx 2.02e+24 Mxy -3.73e+24 Mxz 1.99e+23 Myy 6.73e+24 Myz -1.61e+24 Mzz -8.74e+24 ############## ###############------- ##############------------## #############---------------## ############------------------### T ###########-------------------#### #########---------------------##### ############----------------------###### ###########-----------------------###### ###########------------ ---------####### ###########------------ P ---------####### ##########------------- --------######## ##########-----------------------######### ########------------------------######## ########-----------------------######### #######---------------------########## ######--------------------########## #####------------------########### ####--------------############ ####----------############## #----################# ############## Global CMT Convention Moment Tensor: R T P -8.74e+24 1.99e+23 1.61e+24 1.99e+23 2.02e+24 3.73e+24 1.61e+24 3.73e+24 6.73e+24 |
USGS Body-Wave Moment Tensor Solution 08/02/21 14:16:03.82 NEVADA Epicenter: 41.083 -114.730 MW 5.8 USGS MOMENT TENSOR SOLUTION Depth 7 No. of sta: 91 Moment Tensor; Scale 10**17 Nm Mrr=-6.82 Mtt= 2.12 Mpp= 4.70 Mrt= 1.59 Mrp= 2.38 Mtp= 1.19 Principal axes: T Val= 5.79 Plg=12 Azm=293 N 1.69 3 23 P -7.48 76 128 Best Double Couple:Mo=6.8*10**17 NP1:Strike=206 Dip=58 Slip= -86 NP2: 19 33 -96 ####### ################# ##############-----## #############---------### #############------------#### # #########-------------##### # T ########---------------#### ## #######----------------##### ###########-----------------##### ##########------- --------##### #########-------- P -------###### #########-------- -------###### #######------------------###### #######-----------------####### ######----------------####### ####--------------####### ##------------####### #-------######### ####### |
February 21, 2008, NEVADA, MW=6.0 Goran Ekstrom CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C200802211416A DATA: II IU CU IC G GE L.P.BODY WAVES: 92S, 209C, T= 40 MANTLE WAVES: 83S, 120C, T=125 SURFACE WAVES: 99S, 252C, T= 50 TIMESTAMP: Q-20080221151936 CENTROID LOCATION: ORIGIN TIME: 14:16:10.1 0.1 LAT:41.23N 0.01;LON:114.86W 0.01 DEP: 14.1 0.2;TRIANG HDUR: 2.5 MOMENT TENSOR: SCALE 10**25 D-CM RR=-1.230 0.010; TT= 0.245 0.008 PP= 0.990 0.009; RT=-0.078 0.018 RP= 0.125 0.018; TP= 0.628 0.007 PRINCIPAL AXES: 1.(T) VAL= 1.350;PLG= 2;AZM=300 2.(N) -0.098; 7; 209 3.(P) -1.247; 83; 43 BEST DBLE.COUPLE:M0= 1.30*10**25 NP1: STRIKE= 36;DIP=44;SLIP= -81 NP2: STRIKE=203;DIP=47;SLIP= -99 ########### ###########-------- ##########------------# #########--------------### T #######-----------------### ######------------------#### ########-------------------#### ########-------- ---------##### ########-------- P --------###### #######--------- -------####### #######-------------------####### ######-----------------######## ######----------------######### #####--------------########## ####------------########### ###--------############ --################# ########### |
February 21, 2008, NEVADA, MW=6.0 Goran Ekstrom CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C200802211416A DATA: II IU CU IC G GE L.P.BODY WAVES: 92S, 209C, T= 40 MANTLE WAVES: 83S, 120C, T=125 SURFACE WAVES: 99S, 252C, T= 50 TIMESTAMP: Q-20080221151936 CENTROID LOCATION: ORIGIN TIME: 14:16:10.1 0.1 LAT:41.23N 0.01;LON:114.86W 0.01 DEP: 14.1 0.2;TRIANG HDUR: 2.5 MOMENT TENSOR: SCALE 10**25 D-CM RR=-1.230 0.010; TT= 0.245 0.008 PP= 0.990 0.009; RT=-0.078 0.018 RP= 0.125 0.018; TP= 0.628 0.007 PRINCIPAL AXES: 1.(T) VAL= 1.350;PLG= 2;AZM=300 2.(N) -0.098; 7; 209 3.(P) -1.247; 83; 43 BEST DBLE.COUPLE:M0= 1.30*10**25 NP1: STRIKE= 36;DIP=44;SLIP= -81 NP2: STRIKE=203;DIP=47;SLIP= -99 ########### ###########-------- ##########------------# #########--------------### T #######-----------------### ######------------------#### ########-------------------#### ########-------- ---------##### ########-------- P --------###### #######--------- -------####### #######-------------------####### ######-----------------######## ######----------------######### #####--------------########## ####------------########### ###--------############ --################# ########### |
UCB Seismological Laboratory Inversion method: complete waveform Stations used: CMB KCC ORV Berkeley Moment Tensor Solution Best Fitting Double-Couple: Mo = 1.04E+25 Dyne-cm Mw = 5.95 Z = 11 Plane Strike Rake Dip NP1 228 -71 65 NP2 10 -124 31 Principal Axes: Axis Value Plunge Azimuth T 10.400 18 305 N 0.000 17 40 P -10.400 65 171 Event Date/Time: February 21, 2008 at 14:16:05 UTC Event ID: usus2008nsa9 Moment Tensor: Scale = 10**24 Dyne-cm Component Value Mxx 1.254 Mxy -4.116 Mxz 5.612 Myy 6.359 Myz -3.121 Mzz -7.613 ####### ################--- #####################---- ########################----- ###########################-##### ## ###################-----###### ### T ###############----------###### #### ############-------------####### #################----------------###### ################------------------####### ##############--------------------####### ############----------------------####### ###########-----------------------####### ##########---------- -----------####### #######------------ P ----------####### ######------------- ---------######## #####------------------------######## ###------------------------######## #------------------------######## ---------------------######## -----------------######## -----------######## ####### Lower Hemisphere Equiangle Projection |
USGS Centroid Moment Tensor Solution 08/02/21 14:16:03.82 NEVADA Epicenter: 41.083 -114.730 MW 6.0 USGS CENTROID MOMENT TENSOR 08/02/21 14:16:41.29 Centroid: 42.125 -113.949 Depth 10 No. of sta: 60 Moment Tensor; Scale 10**18 Nm Mrr=-1.12 Mtt= 0.26 Mpp= 0.85 Mrt= 0.29 Mrp=-0.60 Mtp= 0.53 Principal axes: T Val= 1.23 Plg= 9 Azm=116 N 0.16 20 22 P -1.40 66 229 Best Double Couple:Mo=1.3*10**18 NP1:Strike= 9 Dip=58 Slip=-114 NP2: 230 40 -55 ######- ############----- ###############------ #############-----####### ###########---------######### ##########------------######### ########--------------######### #######----------------########## ######-----------------########## #####------------------########## ####-------- -------########### ####-------- P -------########### ##--------- ------######## ##------------------######## T #-----------------######### ---------------########## ------------######### --------######### -###### |
|
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.01 n 3 lp c 0.05 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 75 90 15 5.47 0.3480 WVFGRD96 1.0 255 90 -10 5.49 0.3692 WVFGRD96 2.0 75 75 -5 5.58 0.4315 WVFGRD96 3.0 70 50 -10 5.67 0.4634 WVFGRD96 4.0 70 45 -15 5.71 0.4994 WVFGRD96 5.0 70 45 -15 5.73 0.5362 WVFGRD96 6.0 65 45 -25 5.75 0.5714 WVFGRD96 7.0 50 40 -55 5.81 0.6128 WVFGRD96 8.0 45 35 -65 5.87 0.6595 WVFGRD96 9.0 40 40 -75 5.90 0.7115 WVFGRD96 10.0 35 40 -80 5.90 0.7386 WVFGRD96 11.0 205 50 -95 5.90 0.7412 WVFGRD96 12.0 205 50 -95 5.90 0.7254 WVFGRD96 13.0 200 50 -105 5.89 0.6988 WVFGRD96 14.0 50 45 -60 5.87 0.6700 WVFGRD96 15.0 65 55 -30 5.84 0.6500 WVFGRD96 16.0 70 60 -20 5.84 0.6350 WVFGRD96 17.0 70 65 -20 5.84 0.6216 WVFGRD96 18.0 70 65 -15 5.85 0.6096 WVFGRD96 19.0 70 65 -15 5.85 0.5972 WVFGRD96 20.0 75 70 -10 5.86 0.5847 WVFGRD96 21.0 75 70 -10 5.86 0.5730 WVFGRD96 22.0 75 70 -5 5.86 0.5602 WVFGRD96 23.0 75 75 5 5.87 0.5488 WVFGRD96 24.0 75 75 5 5.87 0.5372 WVFGRD96 25.0 75 75 5 5.88 0.5253 WVFGRD96 26.0 75 75 5 5.88 0.5131 WVFGRD96 27.0 75 75 5 5.89 0.5012 WVFGRD96 28.0 75 75 5 5.89 0.4894 WVFGRD96 29.0 75 80 5 5.90 0.4782
The best solution is
WVFGRD96 11.0 205 50 -95 5.90 0.7412
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.01 n 3 lp c 0.05 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The following figure shows the stations used in the grid search for the best focal mechanism to fit the surface-wave spectral amplitudes of the Love and Rayleigh waves.
![]() |
|
The surface-wave determined focal mechanism is shown here.
NODAL PLANES STK= 194.99 DIP= 55.00 RAKE= -104.99 OR STK= 40.01 DIP= 37.70 RAKE= -69.72 DEPTH = 10.0 km Mw = 5.97 Best Fit 0.8931 - P-T axis plot gives solutions with FIT greater than FIT90
![]() |
The P-wave first motion data for focal mechanism studies are as follow:
Sta Az Dist First motion N12A 222 34 -12345 ELK 227 54 -12345 N13A 117 54 -12345 M13A 58 60 -12345 N11A 251 86 -12345 O12A 179 90 -12345 M11A 295 94 -12345 L12A 350 121 -12345 O13A 147 124 -12345 M14A 68 128 -12345 O11A 216 129 -12345 L13A 31 132 -12345 N14A 100 136 -12345 L11A 326 146 -12345 N10A 255 152 -12345 M10A 289 156 -12345 L14A 50 166 -12345 O10A 240 170 -12345 K12A 356 174 -12345 P12A 184 178 -12345 L10A 309 180 -12345 K13A 18 184 -12345 P11A 207 189 -12345 N15A 95 191 -12345 DUG 120 192 -12345 M15A 77 199 -12345 K14A 39 210 -12345 O15A 114 214 -12345 P10A 222 216 -12345 P14A 138 219 -12345 L15A 62 224 -12345 Q12A 181 226 -12345 M09A 281 228 -12345 O09A 245 228 -12345 N09A 265 233 -12345 J12A 354 243 -12345 Q13A 165 244 -12345 K10A 318 257 -12345 K15A 45 258 -12345 Q11A 197 259 -12345 J13A 11 263 -12345 L09A 294 263 -12345 P09A 231 263 -12345 M16A 83 265 -12345 Q14A 151 265 -12345 J14A 22 270 -12345 P15A 127 270 -12345 J11A 342 274 -12345 HLID 6 278 -12345 N16A 93 281 -12345 N08A 265 285 -12345 Q10A 210 286 -12345 L16A 68 297 -12345 O08A 254 299 -12345 I12A 354 303 -12345 K09A 307 304 -12345 R12A 177 305 -12345 Q15A 138 308 -12345 J10A 328 309 -12345 P16A 121 310 -12345 R11A 193 311 -12345 I13A 9 320 -12345 P08A 242 320 -12345 J15A 36 322 -12345 L08A 294 322 -12345 Q09A 220 323 -12345 K16A 52 328 -12345 R13A 168 329 -12345 I11A 343 330 -12345 N17A 91 332 -12345 I14A 18 335 -12345 R10A 203 336 -12345 R14A 153 343 -12345 L17A 69 344 -12345 M17A 81 347 -12345 N07B 266 355 -12345 O17A 105 355 -12345 WVOR 296 355 -12345 J16A 46 357 -12345 AHID 57 358 -12345 K08A 302 359 -12345 O07A 255 362 -12345 Q08A 229 365 -12345 K17A 59 370 -12345 M07A 277 370 -12345 R09A 213 372 -12345 I15A 29 375 -12345 RRI2 47 381 -12345 R15A 145 383 -12345 S10A 205 384 -12345 S12A 181 385 -12345 H12A 359 386 -12345 P17A 116 386 -12345 P07A 245 389 -12345 H13A 6 390 -12345 Q16A 127 390 -12345 S11A 193 390 -12345 S14A 159 393 -12345 L07A 287 395 -12345 M18A 83 396 -12345 S13A 168 396 -12345 J08A 311 397 -12345 I09A 324 404 -12345 L18A 75 406 -12345 DCID1 45 407 -12345 REDW 51 411 -12345 I16A 40 412 -12345 K07A 297 412 -12345 O18A 101 413 -12345 TPAW 48 414 -12345 H11A 346 416 -12345 R08A 224 416 -12345 P18A 111 417 -12345 Q07A 237 418 -12345 R16A 137 419 -12345 J17A 51 420 -12345 H10A 338 422 -12345 SRU 120 423 -12345 SNOW 50 424 -12345 N06A 267 428 -12345 S09A 210 428 -12345 T11A 185 428 -12345 K18A 65 429 -12345 H15A 23 430 -12345 S15A 150 431 -12345 O06A 258 440 -12345 I08A 317 443 -12345 IMW 44 444 -12345 LOHW 49 444 -12345 MOOW 47 445 -12345 G13A 5 448 -12345 J07A 306 453 -12345 R17A 129 456 -12345 T13A 170 456 -12345 J18A 57 459 -12345 P06A 252 462 -12345 H09A 330 463 -12345 L19A 74 465 -12345 BMO 335 468 -12345 I17A 46 468 -12345 WCN 247 468 -12345 T14A 161 469 -12345 BW06 65 471 -12345 M19A 82 473 -12345 G14A 13 475 -12345 T12A 179 483 -12345 O19A 98 485 -12345 G15A 21 491 -12345 R06C 236 491 -12345 BEK 256 492 -12345 H16A 34 495 -12345 T15A 155 496 -12345 H08A 321 498 -12345
Surface wave analysis was performed using codes from Computer Programs in Seismology, specifically the multiple filter analysis program do_mft and the surface-wave radiation pattern search program srfgrd96.
Digital data were collected, instrument response removed and traces converted
to Z, R an T components. Multiple filter analysis was applied to the Z and T traces to obtain the Rayleigh- and Love-wave spectral amplitudes, respectively.
These were input to the search program which examined all depths between 1 and 25 km
and all possible mechanisms.
![]() |
|
![]() |
Pressure-tension axis trends. Since the surface-wave spectra search does not distinguish between P and T axes and since there is a 180 ambiguity in strike, all possible P and T axes are plotted. First motion data and waveforms will be used to select the preferred mechanism. The purpose of this plot is to provide an idea of the possible range of solutions. The P and T-axes for all mechanisms with goodness of fit greater than 0.9 FITMAX (above) are plotted here. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the Love and Rayleigh wave radiation patterns. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. Because of the symmetry of the spectral amplitude rediation patterns, only strikes from 0-180 degrees are sampled. |
The distribution of broadband stations with azimuth and distance is
Listing of broadband stations used
Since the analysis of the surface-wave radiation patterns uses only spectral amplitudes and because the surfave-wave radiation patterns have a 180 degree symmetry, each surface-wave solution consists of four possible focal mechanisms corresponding to the interchange of the P- and T-axes and a roation of the mechanism by 180 degrees. To select one mechanism, P-wave first motion can be used. This was not possible in this case because all the P-wave first motions were emergent ( a feature of the P-wave wave takeoff angle, the station location and the mechanism). The other way to select among the mechanisms is to compute forward synthetics and compare the observed and predicted waveforms.
The fits to the waveforms with the given mechanism are show below:
![]() |
This figure shows the fit to the three components of motion (Z - vertical, R-radial and T - transverse). For each station and component, the observed traces is shown in red and the model predicted trace in blue. The traces represent filtered ground velocity in units of meters/sec (the peak value is printed adjacent to each trace; each pair of traces to plotted to the same scale to emphasize the difference in levels). Both synthetic and observed traces have been filtered using the SAC commands:
hp c 0.01 n 3 lp c 0.05 n 3
![]() |
![]() |
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: