Location

2006/02/25 01:39:22 45.6500 -75.2300 20.0 4.50 Quebec, Canada

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for Eastern Canada

Focal Mechanism

 SLU Moment Tensor Solution
 2006/02/25 01:39:22  45.6500  -75.2300  20.0  4.50 Quebec, Canada
 
 Best Fitting Double Couple
    Mo = 3.39e+21 dyne-cm
    Mw = 3.62 
    Z  = 16 km
     Plane   Strike  Dip  Rake
      NP1      145    50    85
      NP2      333    40    96
 Principal Axes:
   Axis    Value   Plunge  Azimuth
     T   3.39e+21     84      20
     N   0.00e+00      4     148
     P  -3.39e+21      5     239



 Moment Tensor: (dyne-cm)
    Component  Value
       Mxx    -8.81e+20
       Mxy    -1.48e+21
       Mxz     4.92e+20
       Myy    -2.44e+21
       Myz     3.71e+20
       Mzz     3.32e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 #########-------------              
              --##############------------           
             --#################-----------          
           ----###################-----------        
          -----#####################----------       
         ------######################----------      
        -------########################---------     
        -------########################---------     
       ---------###########   ##########---------    
       ---------########### T ###########--------    
       ----------##########   ###########--------    
       -----------########################-------    
        -----------#######################------     
        ------------######################------     
         -   ---------####################-----      
           P -----------#################-----       
             -------------###############----        
             ---------------############---          
              ------------------#######---           
                 ---------------------#              
                     --------------                  
                                                     
                                                     
                                                     

 Harvard Convention
 Moment Tensor:
      R          T          F
  3.32e+21   4.92e+20  -3.71e+20 
  4.92e+20  -8.81e+20   1.48e+21 
 -3.71e+20   1.48e+21  -2.44e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20060225013922/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 145
      DIP = 50
     RAKE = 85
       MW = 3.62
       HS = 16.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 SLU Moment Tensor Solution
 2006/02/25 01:39:22  45.6500  -75.2300  20.0  4.50 Quebec, Canada
 
 Best Fitting Double Couple
    Mo = 3.39e+21 dyne-cm
    Mw = 3.62 
    Z  = 16 km
     Plane   Strike  Dip  Rake
      NP1      145    50    85
      NP2      333    40    96
 Principal Axes:
   Axis    Value   Plunge  Azimuth
     T   3.39e+21     84      20
     N   0.00e+00      4     148
     P  -3.39e+21      5     239



 Moment Tensor: (dyne-cm)
    Component  Value
       Mxx    -8.81e+20
       Mxy    -1.48e+21
       Mxz     4.92e+20
       Myy    -2.44e+21
       Myz     3.71e+20
       Mzz     3.32e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 #########-------------              
              --##############------------           
             --#################-----------          
           ----###################-----------        
          -----#####################----------       
         ------######################----------      
        -------########################---------     
        -------########################---------     
       ---------###########   ##########---------    
       ---------########### T ###########--------    
       ----------##########   ###########--------    
       -----------########################-------    
        -----------#######################------     
        ------------######################------     
         -   ---------####################-----      
           P -----------#################-----       
             -------------###############----        
             ---------------############---          
              ------------------#######---           
                 ---------------------#              
                     --------------                  
                                                     
                                                     
                                                     

 Harvard Convention
 Moment Tensor:
      R          T          F
  3.32e+21   4.92e+20  -3.71e+20 
  4.92e+20  -8.81e+20   1.48e+21 
 -3.71e+20   1.48e+21  -2.44e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20060225013922/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.12 n 3
lp c 0.50 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   225    75    50   3.25 0.3320
WVFGRD96    1.0   230    65    40   3.31 0.3356
WVFGRD96    2.0   225    65    50   3.26 0.3249
WVFGRD96    3.0    35    90   -35   3.29 0.3013
WVFGRD96    4.0    35    90   -35   3.32 0.2806
WVFGRD96    5.0   225    35   -95   3.38 0.2650
WVFGRD96    6.0    50    45    90   3.42 0.2544
WVFGRD96    7.0   265    35   -45   3.43 0.2580
WVFGRD96    8.0    80    35   -60   3.47 0.2794
WVFGRD96    9.0    65    35   -70   3.48 0.2831
WVFGRD96   10.0   330    35    90   3.54 0.2903
WVFGRD96   11.0   335    40    90   3.55 0.3041
WVFGRD96   12.0   145    50    75   3.57 0.3157
WVFGRD96   13.0   150    45    85   3.59 0.3614
WVFGRD96   14.0   150    50    80   3.60 0.3652
WVFGRD96   15.0   145    50    80   3.61 0.3818
WVFGRD96   16.0   145    50    85   3.62 0.3837
WVFGRD96   17.0   145    45    85   3.62 0.3792
WVFGRD96   18.0   150    50    95   3.63 0.3829
WVFGRD96   19.0   145    45    85   3.62 0.3791
WVFGRD96   20.0   325    45    90   3.63 0.3526
WVFGRD96   21.0   140    45    85   3.64 0.3596
WVFGRD96   22.0   135    40    65   3.63 0.3364
WVFGRD96   23.0   155    35    15   3.72 0.3346
WVFGRD96   24.0   130    40    60   3.64 0.3310
WVFGRD96   25.0   155    35    15   3.72 0.3292
WVFGRD96   26.0   155    30    15   3.73 0.3496
WVFGRD96   27.0   150    35    10   3.75 0.3489
WVFGRD96   28.0   150    35    10   3.74 0.3397
WVFGRD96   29.0   155    35    15   3.72 0.3254

The best solution is

WVFGRD96   16.0   145    50    85   3.62 0.3837

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was

hp c 0.12 n 3
lp c 0.50 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The CUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
CUS Model with Q from simple gamma values
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
  H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC)   QP   QS  ETAP  ETAS  FREFP  FREFS
  1.0000  5.0000  2.8900  2.5000 0.172E-02 0.387E-02 0.00  0.00  1.00  1.00 
  9.0000  6.1000  3.5200  2.7300 0.160E-02 0.363E-02 0.00  0.00  1.00  1.00 
 10.0000  6.4000  3.7000  2.8200 0.149E-02 0.336E-02 0.00  0.00  1.00  1.00 
 20.0000  6.7000  3.8700  2.9020 0.000E-04 0.000E-04 0.00  0.00  1.00  1.00 
  0.0000  8.1500  4.7000  3.3640 0.194E-02 0.431E-02 0.00  0.00  1.00  1.00 

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Tue Nov 25 10:23:01 CST 2008

Last Changed 2006/02/25