USGS/SLU Moment Tensor Solution ENS 2020/05/11 10:45:06:0 38.68 127.18 16.0 3.8 Korea Stations used: KS.CHC2 KS.DACB KS.DAG2 KS.DGY2 KS.EMSB KS.EURB KS.GOCB KS.GWYB KS.HAWB KS.IMWB KS.JEO2 KS.OKCB KS.OKEB KS.SES2 KS.SHHB KS.SMKB KS.ULJ2 Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.76e+21 dyne-cm Mw = 3.65 Z = 6 km Plane Strike Dip Rake NP1 135 85 20 NP2 43 70 175 Principal Axes: Axis Value Plunge Azimuth T 3.76e+21 18 1 N 0.00e+00 69 148 P -3.76e+21 10 267 Moment Tensor: (dyne-cm) Component Value Mxx 3.41e+21 Mxy -1.12e+20 Mxz 1.11e+21 Myy -3.63e+21 Myz 6.77e+20 Mzz 2.23e+20 ###### ##### ########## T ######### ############# ############ -############################- ----###########################--- -------########################----- ---------######################------- ------------###################--------- --------------################---------- ----------------##############------------ - --------------##########-------------- - P ----------------#######--------------- - ------------------###----------------- ---------------------------------------- ---------------------####--------------- ------------------########------------ --------------#############--------- ----------##################------ -----########################- ############################ ###################### ############## Global CMT Convention Moment Tensor: R T P 2.23e+20 1.11e+21 -6.77e+20 1.11e+21 3.41e+21 1.12e+20 -6.77e+20 1.12e+20 -3.63e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200511104506/index.html |
STK = 135 DIP = 85 RAKE = 20 MW = 3.65 HS = 6.0
The NDK file is 20200511104506.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2020/05/11 10:45:06:0 38.68 127.18 16.0 3.8 Korea Stations used: KS.CHC2 KS.DACB KS.DAG2 KS.DGY2 KS.EMSB KS.EURB KS.GOCB KS.GWYB KS.HAWB KS.IMWB KS.JEO2 KS.OKCB KS.OKEB KS.SES2 KS.SHHB KS.SMKB KS.ULJ2 Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.76e+21 dyne-cm Mw = 3.65 Z = 6 km Plane Strike Dip Rake NP1 135 85 20 NP2 43 70 175 Principal Axes: Axis Value Plunge Azimuth T 3.76e+21 18 1 N 0.00e+00 69 148 P -3.76e+21 10 267 Moment Tensor: (dyne-cm) Component Value Mxx 3.41e+21 Mxy -1.12e+20 Mxz 1.11e+21 Myy -3.63e+21 Myz 6.77e+20 Mzz 2.23e+20 ###### ##### ########## T ######### ############# ############ -############################- ----###########################--- -------########################----- ---------######################------- ------------###################--------- --------------################---------- ----------------##############------------ - --------------##########-------------- - P ----------------#######--------------- - ------------------###----------------- ---------------------------------------- ---------------------####--------------- ------------------########------------ --------------#############--------- ----------##################------ -----########################- ############################ ###################### ############## Global CMT Convention Moment Tensor: R T P 2.23e+20 1.11e+21 -6.77e+20 1.11e+21 3.41e+21 1.12e+20 -6.77e+20 1.12e+20 -3.63e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20200511104506/index.html |
(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 135 75 20 3.57 0.7172 WVFGRD96 2.0 135 90 -5 3.58 0.7512 WVFGRD96 3.0 135 80 20 3.61 0.7690 WVFGRD96 4.0 135 85 20 3.63 0.7797 WVFGRD96 5.0 315 90 -20 3.64 0.7784 WVFGRD96 6.0 135 85 20 3.65 0.7816 WVFGRD96 7.0 135 85 15 3.66 0.7739 WVFGRD96 8.0 135 85 15 3.67 0.7616 WVFGRD96 9.0 135 85 15 3.68 0.7466 WVFGRD96 10.0 135 85 15 3.68 0.7308 WVFGRD96 11.0 135 85 15 3.69 0.7137 WVFGRD96 12.0 135 85 15 3.70 0.6948 WVFGRD96 13.0 135 85 15 3.71 0.6753 WVFGRD96 14.0 315 85 10 3.72 0.6528 WVFGRD96 15.0 135 85 15 3.73 0.6363 WVFGRD96 16.0 135 85 15 3.74 0.6176 WVFGRD96 17.0 135 85 20 3.75 0.6007 WVFGRD96 18.0 315 90 -20 3.76 0.5806 WVFGRD96 19.0 315 90 -15 3.76 0.5656 WVFGRD96 20.0 315 90 -15 3.78 0.5512 WVFGRD96 21.0 315 90 -20 3.79 0.5372 WVFGRD96 22.0 135 85 20 3.80 0.5241 WVFGRD96 23.0 135 90 20 3.81 0.5118 WVFGRD96 24.0 135 90 20 3.82 0.5008 WVFGRD96 25.0 135 90 20 3.83 0.4897
The best solution is
WVFGRD96 6.0 135 85 20 3.65 0.7816
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfmtgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search over depth are as follow:
MT Program H(km) Mxx(dyne-cm) Myy Mxy Mxz Myz Mzz Mw Fit WVFMTGRD96 1.0 0.162E+22 -0.388E+22 -0.290E+21 -0.426E+20 -0.114E+22 -0.138E+22 3.6162 0.6958 WVFMTGRD96 2.0 0.260E+22 -0.340E+22 -0.358E+21 0.427E+21 -0.299E+21 0.135E+22 3.6065 0.7192 WVFMTGRD96 3.0 0.274E+22 -0.363E+22 -0.393E+21 0.985E+21 0.474E+21 0.597E+21 3.6251 0.7337 WVFMTGRD96 4.0 0.318E+22 -0.350E+22 -0.412E+21 0.103E+22 0.497E+21 0.933E+21 3.6393 0.7440 WVFMTGRD96 5.0 0.362E+22 -0.331E+22 -0.428E+21 0.107E+22 0.515E+21 0.129E+22 3.6536 0.7507 WVFMTGRD96 6.0 0.427E+22 -0.294E+22 -0.457E+21 0.102E+22 0.571E+21 0.205E+22 3.6778 0.7520 WVFMTGRD96 7.0 0.472E+22 -0.279E+22 -0.482E+21 0.101E+22 0.612E+21 0.252E+22 3.6991 0.7482 WVFMTGRD96 8.0 0.507E+22 -0.268E+22 -0.498E+21 0.105E+22 0.633E+21 0.280E+22 3.7150 0.7411 WVFMTGRD96 9.0 0.553E+22 -0.244E+22 -0.512E+21 0.108E+22 0.651E+21 0.320E+22 3.7341 0.7297 WVFMTGRD96 10.0 0.571E+22 -0.262E+22 -0.550E+21 0.102E+22 0.721E+21 0.352E+22 3.7479 0.7173 WVFMTGRD96 11.0 0.615E+22 -0.242E+22 -0.565E+21 0.105E+22 0.741E+21 0.389E+22 3.7655 0.7024 WVFMTGRD96 12.0 0.669E+22 -0.215E+22 -0.583E+21 0.108E+22 0.765E+21 0.436E+22 3.7866 0.6851 WVFMTGRD96 13.0 0.722E+22 -0.183E+22 -0.597E+21 0.110E+22 0.783E+21 0.484E+22 3.8063 0.6660 WVFMTGRD96 14.0 0.706E+22 -0.227E+22 -0.615E+21 0.114E+22 0.807E+21 0.460E+22 3.8020 0.6467 WVFMTGRD96 15.0 0.762E+22 -0.193E+22 -0.630E+21 0.117E+22 0.827E+21 0.511E+22 3.8221 0.6292 WVFMTGRD96 16.0 0.611E+22 -0.376E+22 -0.470E+21 0.115E+22 0.106E+22 0.450E+22 3.7952 0.6122 WVFMTGRD96 17.0 0.705E+22 -0.301E+22 -0.455E+21 0.135E+22 0.104E+22 0.517E+22 3.8205 0.5970 WVFMTGRD96 18.0 0.665E+22 -0.362E+22 -0.478E+21 0.146E+22 0.167E+22 0.492E+22 3.8206 0.5829 WVFMTGRD96 19.0 0.686E+22 -0.374E+22 -0.493E+21 0.151E+22 0.172E+22 0.507E+22 3.8296 0.5704
The best solution is
WVFMTGRD96 6.0 0.427E+22 -0.294E+22 -0.457E+21 0.102E+22 0.571E+21 0.205E+22 3.6778 0.7520
The complete moment tensor decomposition using the program mtinfo is given in the text file MTGRDinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.
The P-wave first motion mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.
The t6.invSNU.CUVEL model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 30 iterations ISOTROPIC KGS SPHERICAL EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.3800 3.0009 2.5772 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 1.0000 5.8057 3.2383 2.6606 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 1.0000 6.1732 3.4433 2.7513 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 3.0000 6.2872 3.5067 2.7862 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 6.3245 3.5281 2.7970 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 6.4165 3.5788 2.8248 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 4.0000 6.5576 3.6576 2.8653 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 6.6402 3.7038 2.8865 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 2.5000 6.6540 3.7115 2.8897 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 2.5000 7.0960 3.9579 3.0111 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 2.5000 7.9155 4.4148 3.2804 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 2.5000 7.8925 4.4019 3.2735 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.8665 4.3876 3.2643 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.5675 4.2211 3.1625 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.7550 4.3252 3.2262 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.7602 4.3280 3.2282 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.7958 4.3487 3.2398 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.7415 4.3195 3.2217 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6497 4.2688 3.1915 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6408 4.2653 3.1889 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6666 4.2716 3.1976 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6699 4.2830 3.1986 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6780 4.2885 3.2014 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6816 4.2896 3.2028 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6946 4.2996 3.2072 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 10.0000 7.7349 4.3197 3.2208 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 10.0000 7.7791 4.3484 3.2355 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 10.0000 7.8331 4.3722 3.2536 0.862E-02 0.131E-01 0.00 0.00 1.00 1.00 10.0000 7.8824 4.3863 3.2703 0.862E-02 0.131E-01 0.00 0.00 1.00 1.00 10.0000 7.9360 4.4024 3.2883 0.855E-02 0.131E-01 0.00 0.00 1.00 1.00 10.0000 7.9967 4.4237 3.3088 0.847E-02 0.131E-01 0.00 0.00 1.00 1.00 10.0000 8.0529 4.4423 3.3289 0.847E-02 0.131E-01 0.00 0.00 1.00 1.00 10.0000 8.1110 4.4603 3.3496 0.833E-02 0.130E-01 0.00 0.00 1.00 1.00 10.0000 8.1762 4.4832 3.3728 0.826E-02 0.129E-01 0.00 0.00 1.00 1.00 10.0000 8.2410 4.5054 3.3959 0.813E-02 0.128E-01 0.00 0.00 1.00 1.00 10.0000 8.3022 4.5257 3.4176 0.806E-02 0.126E-01 0.00 0.00 1.00 1.00 10.0000 8.3635 4.5514 3.4395 0.474E-02 0.746E-02 0.00 0.00 1.00 1.00 10.0000 8.4257 4.5839 3.4617 0.472E-02 0.741E-02 0.00 0.00 1.00 1.00 10.0000 8.4845 4.6145 3.4827 0.469E-02 0.741E-02 0.00 0.00 1.00 1.00 10.0000 8.5403 4.6434 3.5020 0.467E-02 0.735E-02 0.00 0.00 1.00 1.00 10.0000 8.5934 4.6708 3.5199 0.465E-02 0.735E-02 0.00 0.00 1.00 1.00 10.0000 8.6436 4.6959 3.5369 0.463E-02 0.730E-02 0.00 0.00 1.00 1.00 10.0000 8.6912 4.7194 3.5530 0.461E-02 0.730E-02 0.00 0.00 1.00 1.00 10.0000 8.7365 4.7413 3.5684 0.459E-02 0.725E-02 0.00 0.00 1.00 1.00 10.0000 8.7797 4.7622 3.5831 0.455E-02 0.725E-02 0.00 0.00 1.00 1.00 10.0000 8.8199 4.7819 3.5967 0.452E-02 0.719E-02 0.00 0.00 1.00 1.00 10.0000 8.8587 4.8001 3.6099 0.450E-02 0.714E-02 0.00 0.00 1.00 1.00 10.0000 8.8958 4.8177 3.6226 0.448E-02 0.714E-02 0.00 0.00 1.00 1.00 10.0000 8.9314 4.8346 3.6347 0.446E-02 0.709E-02 0.00 0.00 1.00 1.00 10.0000 8.9647 4.8500 3.6461 0.442E-02 0.704E-02 0.00 0.00 1.00 1.00 10.0000 8.9962 4.8651 3.6569 0.441E-02 0.704E-02 0.00 0.00 1.00 1.00 10.0000 9.0263 4.8783 3.6685 0.439E-02 0.699E-02 0.00 0.00 1.00 1.00 10.0000 9.0547 4.8915 3.6800 0.435E-02 0.694E-02 0.00 0.00 1.00 1.00 10.0000 9.0822 4.9041 3.6911 0.433E-02 0.690E-02 0.00 0.00 1.00 1.00 10.0000 9.1091 4.9164 3.7020 0.431E-02 0.690E-02 0.00 0.00 1.00 1.00 10.0000 9.1346 4.9280 3.7123 0.427E-02 0.685E-02 0.00 0.00 1.00 1.00 10.0000 9.4876 5.1513 3.8537 0.388E-02 0.613E-02 0.00 0.00 1.00 1.00 10.0000 9.5095 5.1663 3.8624 0.388E-02 0.613E-02 0.00 0.00 1.00 1.00 10.0000 9.5299 5.1806 3.8703 0.386E-02 0.610E-02 0.00 0.00 1.00 1.00 10.0000 9.5507 5.1944 3.8784 0.386E-02 0.610E-02 0.00 0.00 1.00 1.00 10.0000 9.5706 5.2080 3.8861 0.385E-02 0.606E-02 0.00 0.00 1.00 1.00 10.0000 9.5900 5.2214 3.8937 0.385E-02 0.606E-02 0.00 0.00 1.00 1.00 10.0000 9.6090 5.2347 3.9011 0.383E-02 0.606E-02 0.00 0.00 1.00 1.00 10.0000 9.6272 5.2480 3.9081 0.383E-02 0.602E-02 0.00 0.00 1.00 1.00 10.0000 9.6458 5.2604 3.9154 0.383E-02 0.602E-02 0.00 0.00 1.00 1.00 10.0000 9.6794 5.2816 3.9282 0.382E-02 0.599E-02 0.00 0.00 1.00 1.00 10.0000 9.7130 5.3029 3.9409 0.382E-02 0.599E-02 0.00 0.00 1.00 1.00 10.0000 9.7466 5.3242 3.9537 0.380E-02 0.599E-02 0.00 0.00 1.00 1.00 10.0000 9.7799 5.3454 3.9664 0.380E-02 0.595E-02 0.00 0.00 1.00 1.00 10.0000 9.8137 5.3669 3.9792 0.380E-02 0.595E-02 0.00 0.00 1.00 1.00 10.0000 9.8473 5.3883 3.9920 0.379E-02 0.592E-02 0.00 0.00 1.00 1.00 10.0000 9.8808 5.4094 4.0047 0.379E-02 0.592E-02 0.00 0.00 1.00 1.00 0.0000 9.9144 5.4306 4.0175 0.377E-02 0.592E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: