USGS/SLU Moment Tensor Solution ENS 2017/11/15 05:29:31:0 36.12 129.36 10.0 5.4 Korea Stations used: KS.BOSB KS.BUS2 KS.CHC2 KS.CHJ2 KS.DACB KS.DAG2 KS.DGY2 KS.EMSB KS.EURB KS.GAHB KS.GOCB KS.GWYB KS.HALB KS.HAMB KS.HWCB KS.IMWB KS.JEO2 KS.KOHB KS.NAWB KS.OKCB KS.OKEB KS.SEHB KS.SEO2 KS.SES2 KS.SHHB KS.SMKB KS.ULJ2 KS.YNCB Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.33e+24 dyne-cm Mw = 5.35 Z = 5 km Plane Strike Dip Rake NP1 231 72 154 NP2 330 65 20 Principal Axes: Axis Value Plunge Azimuth T 1.33e+24 31 189 N 0.00e+00 58 19 P -1.33e+24 5 282 Moment Tensor: (dyne-cm) Component Value Mxx 8.96e+23 Mxy 4.17e+23 Mxz -6.05e+23 Myy -1.25e+24 Myz 1.09e+22 Mzz 3.49e+23 ############## --#################### --------#################### ------------################## ----------------#############----- -------------------######----------- ---------------------##--------------- -------------------##----------------- P ----------------#######--------------- --------------##########--------------- ---------------#############-------------- -------------################------------- -----------##################------------- ---------####################----------- -------#######################---------- -----########################--------- ---#########################-------- -############ ############------ ########### T ############---- ########## ############--- #####################- ############## Global CMT Convention Moment Tensor: R T P 3.49e+23 -6.05e+23 -1.09e+22 -6.05e+23 8.96e+23 -4.17e+23 -1.09e+22 -4.17e+23 -1.25e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20171115052931/index.html |
STK = 330 DIP = 65 RAKE = 20 MW = 5.35 HS = 5.0
The NDK file is 20171115052931.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2017/11/15 05:29:31:0 36.12 129.36 10.0 5.4 Korea Stations used: KS.BOSB KS.BUS2 KS.CHC2 KS.CHJ2 KS.DACB KS.DAG2 KS.DGY2 KS.EMSB KS.EURB KS.GAHB KS.GOCB KS.GWYB KS.HALB KS.HAMB KS.HWCB KS.IMWB KS.JEO2 KS.KOHB KS.NAWB KS.OKCB KS.OKEB KS.SEHB KS.SEO2 KS.SES2 KS.SHHB KS.SMKB KS.ULJ2 KS.YNCB Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.33e+24 dyne-cm Mw = 5.35 Z = 5 km Plane Strike Dip Rake NP1 231 72 154 NP2 330 65 20 Principal Axes: Axis Value Plunge Azimuth T 1.33e+24 31 189 N 0.00e+00 58 19 P -1.33e+24 5 282 Moment Tensor: (dyne-cm) Component Value Mxx 8.96e+23 Mxy 4.17e+23 Mxz -6.05e+23 Myy -1.25e+24 Myz 1.09e+22 Mzz 3.49e+23 ############## --#################### --------#################### ------------################## ----------------#############----- -------------------######----------- ---------------------##--------------- -------------------##----------------- P ----------------#######--------------- --------------##########--------------- ---------------#############-------------- -------------################------------- -----------##################------------- ---------####################----------- -------#######################---------- -----########################--------- ---#########################-------- -############ ############------ ########### T ############---- ########## ############--- #####################- ############## Global CMT Convention Moment Tensor: R T P 3.49e+23 -6.05e+23 -1.09e+22 -6.05e+23 8.96e+23 -4.17e+23 -1.09e+22 -4.17e+23 -1.25e+24 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20171115052931/index.html |
|
(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.
(a) ML computed using the IASPEI formula; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 330 75 -5 5.24 0.7195 WVFGRD96 2.0 335 60 15 5.31 0.7508 WVFGRD96 3.0 335 60 20 5.34 0.7927 WVFGRD96 4.0 335 60 20 5.35 0.8148 WVFGRD96 5.0 330 65 20 5.35 0.8172 WVFGRD96 6.0 330 65 15 5.35 0.8129 WVFGRD96 7.0 330 70 15 5.36 0.8033 WVFGRD96 8.0 330 70 15 5.37 0.7904 WVFGRD96 9.0 330 70 15 5.37 0.7796 WVFGRD96 10.0 330 70 15 5.38 0.7680 WVFGRD96 11.0 330 70 15 5.39 0.7550 WVFGRD96 12.0 330 75 15 5.40 0.7395 WVFGRD96 13.0 330 75 15 5.41 0.7251 WVFGRD96 14.0 330 75 20 5.41 0.7099 WVFGRD96 15.0 330 75 20 5.42 0.6940 WVFGRD96 16.0 330 75 20 5.43 0.6776 WVFGRD96 17.0 330 75 20 5.44 0.6596 WVFGRD96 18.0 330 75 20 5.45 0.6414 WVFGRD96 19.0 330 75 20 5.45 0.6226 WVFGRD96 20.0 330 75 20 5.46 0.6032 WVFGRD96 21.0 330 80 20 5.47 0.5841 WVFGRD96 22.0 330 80 20 5.48 0.5665 WVFGRD96 23.0 330 80 20 5.49 0.5489 WVFGRD96 24.0 330 80 20 5.50 0.5317 WVFGRD96 25.0 145 75 -10 5.51 0.5171
The best solution is
WVFGRD96 5.0 330 65 20 5.35 0.8172
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The t6.invSNU.CUVEL.model was used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 30 iterations ISOTROPIC KGS SPHERICAL EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.3800 3.0009 2.5772 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 1.0000 5.8057 3.2383 2.6606 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 1.0000 6.1732 3.4433 2.7513 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 3.0000 6.2872 3.5067 2.7862 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 6.3245 3.5281 2.7970 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 6.4165 3.5788 2.8248 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 4.0000 6.5576 3.6576 2.8653 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 6.6402 3.7038 2.8865 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 2.5000 6.6540 3.7115 2.8897 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 2.5000 7.0960 3.9579 3.0111 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 2.5000 7.9155 4.4148 3.2804 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 2.5000 7.8925 4.4019 3.2735 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.8665 4.3876 3.2643 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.5675 4.2211 3.1625 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.7550 4.3252 3.2262 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.7602 4.3280 3.2282 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.7958 4.3487 3.2398 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.7415 4.3195 3.2217 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6497 4.2688 3.1915 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6408 4.2653 3.1889 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6666 4.2716 3.1976 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6699 4.2830 3.1986 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6780 4.2885 3.2014 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6816 4.2896 3.2028 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6946 4.2996 3.2072 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 10.0000 7.7349 4.3197 3.2208 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 10.0000 7.7791 4.3484 3.2355 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 10.0000 7.8331 4.3722 3.2536 0.862E-02 0.131E-01 0.00 0.00 1.00 1.00 10.0000 7.8824 4.3863 3.2703 0.862E-02 0.131E-01 0.00 0.00 1.00 1.00 10.0000 7.9360 4.4024 3.2883 0.855E-02 0.131E-01 0.00 0.00 1.00 1.00 10.0000 7.9967 4.4237 3.3088 0.847E-02 0.131E-01 0.00 0.00 1.00 1.00 10.0000 8.0529 4.4423 3.3289 0.847E-02 0.131E-01 0.00 0.00 1.00 1.00 10.0000 8.1110 4.4603 3.3496 0.833E-02 0.130E-01 0.00 0.00 1.00 1.00 10.0000 8.1762 4.4832 3.3728 0.826E-02 0.129E-01 0.00 0.00 1.00 1.00 10.0000 8.2410 4.5054 3.3959 0.813E-02 0.128E-01 0.00 0.00 1.00 1.00 10.0000 8.3022 4.5257 3.4176 0.806E-02 0.126E-01 0.00 0.00 1.00 1.00 10.0000 8.3635 4.5514 3.4395 0.474E-02 0.746E-02 0.00 0.00 1.00 1.00 10.0000 8.4257 4.5839 3.4617 0.472E-02 0.741E-02 0.00 0.00 1.00 1.00 10.0000 8.4845 4.6145 3.4827 0.469E-02 0.741E-02 0.00 0.00 1.00 1.00 10.0000 8.5403 4.6434 3.5020 0.467E-02 0.735E-02 0.00 0.00 1.00 1.00 10.0000 8.5934 4.6708 3.5199 0.465E-02 0.735E-02 0.00 0.00 1.00 1.00 10.0000 8.6436 4.6959 3.5369 0.463E-02 0.730E-02 0.00 0.00 1.00 1.00 10.0000 8.6912 4.7194 3.5530 0.461E-02 0.730E-02 0.00 0.00 1.00 1.00 10.0000 8.7365 4.7413 3.5684 0.459E-02 0.725E-02 0.00 0.00 1.00 1.00 10.0000 8.7797 4.7622 3.5831 0.455E-02 0.725E-02 0.00 0.00 1.00 1.00 10.0000 8.8199 4.7819 3.5967 0.452E-02 0.719E-02 0.00 0.00 1.00 1.00 10.0000 8.8587 4.8001 3.6099 0.450E-02 0.714E-02 0.00 0.00 1.00 1.00 10.0000 8.8958 4.8177 3.6226 0.448E-02 0.714E-02 0.00 0.00 1.00 1.00 10.0000 8.9314 4.8346 3.6347 0.446E-02 0.709E-02 0.00 0.00 1.00 1.00 10.0000 8.9647 4.8500 3.6461 0.442E-02 0.704E-02 0.00 0.00 1.00 1.00 10.0000 8.9962 4.8651 3.6569 0.441E-02 0.704E-02 0.00 0.00 1.00 1.00 10.0000 9.0263 4.8783 3.6685 0.439E-02 0.699E-02 0.00 0.00 1.00 1.00 10.0000 9.0547 4.8915 3.6800 0.435E-02 0.694E-02 0.00 0.00 1.00 1.00 10.0000 9.0822 4.9041 3.6911 0.433E-02 0.690E-02 0.00 0.00 1.00 1.00 10.0000 9.1091 4.9164 3.7020 0.431E-02 0.690E-02 0.00 0.00 1.00 1.00 10.0000 9.1346 4.9280 3.7123 0.427E-02 0.685E-02 0.00 0.00 1.00 1.00 10.0000 9.4876 5.1513 3.8537 0.388E-02 0.613E-02 0.00 0.00 1.00 1.00 10.0000 9.5095 5.1663 3.8624 0.388E-02 0.613E-02 0.00 0.00 1.00 1.00 10.0000 9.5299 5.1806 3.8703 0.386E-02 0.610E-02 0.00 0.00 1.00 1.00 10.0000 9.5507 5.1944 3.8784 0.386E-02 0.610E-02 0.00 0.00 1.00 1.00 10.0000 9.5706 5.2080 3.8861 0.385E-02 0.606E-02 0.00 0.00 1.00 1.00 10.0000 9.5900 5.2214 3.8937 0.385E-02 0.606E-02 0.00 0.00 1.00 1.00 10.0000 9.6090 5.2347 3.9011 0.383E-02 0.606E-02 0.00 0.00 1.00 1.00 10.0000 9.6272 5.2480 3.9081 0.383E-02 0.602E-02 0.00 0.00 1.00 1.00 10.0000 9.6458 5.2604 3.9154 0.383E-02 0.602E-02 0.00 0.00 1.00 1.00 10.0000 9.6794 5.2816 3.9282 0.382E-02 0.599E-02 0.00 0.00 1.00 1.00 10.0000 9.7130 5.3029 3.9409 0.382E-02 0.599E-02 0.00 0.00 1.00 1.00 10.0000 9.7466 5.3242 3.9537 0.380E-02 0.599E-02 0.00 0.00 1.00 1.00 10.0000 9.7799 5.3454 3.9664 0.380E-02 0.595E-02 0.00 0.00 1.00 1.00 10.0000 9.8137 5.3669 3.9792 0.380E-02 0.595E-02 0.00 0.00 1.00 1.00 10.0000 9.8473 5.3883 3.9920 0.379E-02 0.592E-02 0.00 0.00 1.00 1.00 10.0000 9.8808 5.4094 4.0047 0.379E-02 0.592E-02 0.00 0.00 1.00 1.00 0.0000 9.9144 5.4306 4.0175 0.377E-02 0.592E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: