2014/03/31 19:48:35 36.95 124.50 10.0 5.1 Korea
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2014/03/31 19:48:35:0 36.95 124.50 10.0 5.1 Korea Stations used: KS.BAR KS.BUS KS.BUS2 KS.CHJ KS.DACB KS.DAG2 KS.DGY2 KS.GAHB KS.HWCB KS.JJU KS.KOHB KS.KWJ KS.SEHB KS.SEO KS.SEO2 Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.62e+23 dyne-cm Mw = 4.74 Z = 12 km Plane Strike Dip Rake NP1 115 60 -45 NP2 232 52 -141 Principal Axes: Axis Value Plunge Azimuth T 1.62e+23 5 175 N 0.00e+00 38 268 P -1.62e+23 52 79 Moment Tensor: (dyne-cm) Component Value Mxx 1.58e+23 Mxy -2.58e+22 Mxz -2.77e+22 Myy -5.83e+22 Myz -7.62e+22 Mzz -9.93e+22 ############## ###################### ############################ ############################## ###################--------------- ################-------------------- ##############------------------------ --###########--------------------------- ---########----------------------------- -----#####------------------- ---------- -------##-------------------- P ---------- --------#-------------------- ---------- -------####------------------------------- -----########--------------------------- ----############------------------------ ---################------------------- --#########################----##### -################################# ############################## ############################ ########### ######## ####### T #### Global CMT Convention Moment Tensor: R T P -9.93e+22 -2.77e+22 7.62e+22 -2.77e+22 1.58e+23 2.58e+22 7.62e+22 2.58e+22 -5.83e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140331194835/index.html |
STK = 115 DIP = 60 RAKE = -45 MW = 4.74 HS = 12.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2014/03/31 19:48:35:0 36.95 124.50 10.0 5.1 Korea Stations used: KS.BAR KS.BUS KS.BUS2 KS.CHJ KS.DACB KS.DAG2 KS.DGY2 KS.GAHB KS.HWCB KS.JJU KS.KOHB KS.KWJ KS.SEHB KS.SEO KS.SEO2 Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.62e+23 dyne-cm Mw = 4.74 Z = 12 km Plane Strike Dip Rake NP1 115 60 -45 NP2 232 52 -141 Principal Axes: Axis Value Plunge Azimuth T 1.62e+23 5 175 N 0.00e+00 38 268 P -1.62e+23 52 79 Moment Tensor: (dyne-cm) Component Value Mxx 1.58e+23 Mxy -2.58e+22 Mxz -2.77e+22 Myy -5.83e+22 Myz -7.62e+22 Mzz -9.93e+22 ############## ###################### ############################ ############################## ###################--------------- ################-------------------- ##############------------------------ --###########--------------------------- ---########----------------------------- -----#####------------------- ---------- -------##-------------------- P ---------- --------#-------------------- ---------- -------####------------------------------- -----########--------------------------- ----############------------------------ ---################------------------- --#########################----##### -################################# ############################## ############################ ########### ######## ####### T #### Global CMT Convention Moment Tensor: R T P -9.93e+22 -2.77e+22 7.62e+22 -2.77e+22 1.58e+23 2.58e+22 7.62e+22 2.58e+22 -5.83e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140331194835/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 300 50 80 4.51 0.5801 WVFGRD96 1.0 310 45 80 4.57 0.5731 WVFGRD96 2.0 120 70 65 4.64 0.5450 WVFGRD96 3.0 135 65 60 4.67 0.5606 WVFGRD96 4.0 120 70 60 4.64 0.5631 WVFGRD96 5.0 120 85 -50 4.62 0.5872 WVFGRD96 6.0 110 65 -55 4.67 0.6554 WVFGRD96 7.0 100 55 -65 4.72 0.7232 WVFGRD96 8.0 105 55 -60 4.72 0.7733 WVFGRD96 9.0 105 55 -55 4.72 0.8038 WVFGRD96 10.0 110 55 -50 4.73 0.8220 WVFGRD96 11.0 110 55 -50 4.74 0.8308 WVFGRD96 12.0 115 60 -45 4.74 0.8333 WVFGRD96 13.0 115 60 -45 4.75 0.8293 WVFGRD96 14.0 115 60 -45 4.75 0.8196 WVFGRD96 15.0 115 60 -45 4.76 0.8065 WVFGRD96 16.0 115 60 -45 4.77 0.7902 WVFGRD96 17.0 115 55 -40 4.79 0.7740 WVFGRD96 18.0 120 60 -35 4.81 0.7568 WVFGRD96 19.0 120 55 -35 4.82 0.7388 WVFGRD96 20.0 120 55 -35 4.83 0.7196 WVFGRD96 21.0 120 55 -35 4.84 0.7010 WVFGRD96 22.0 120 55 -35 4.85 0.6819 WVFGRD96 23.0 120 55 -30 4.86 0.6613 WVFGRD96 24.0 120 55 -30 4.87 0.6402 WVFGRD96 25.0 120 55 -30 4.88 0.6188
The best solution is
WVFGRD96 12.0 115 60 -45 4.74 0.8333
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.04 n 3 lp c 0.20 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 135 45 90 4.43 0.4011 WVFGRD96 1.0 140 45 90 4.51 0.3969 WVFGRD96 2.0 140 70 45 4.46 0.3026 WVFGRD96 3.0 105 85 55 4.45 0.3259 WVFGRD96 4.0 110 80 55 4.48 0.3630 WVFGRD96 5.0 110 75 60 4.50 0.3941 WVFGRD96 6.0 275 75 -60 4.53 0.4206 WVFGRD96 7.0 110 60 -55 4.59 0.4679 WVFGRD96 8.0 110 60 -60 4.63 0.5067 WVFGRD96 9.0 115 65 -55 4.65 0.5377 WVFGRD96 10.0 115 65 -55 4.67 0.5599 WVFGRD96 11.0 115 65 -55 4.69 0.5709 WVFGRD96 12.0 115 65 -55 4.72 0.5750 WVFGRD96 13.0 110 60 -60 4.74 0.5680 WVFGRD96 14.0 110 60 -60 4.76 0.5506 WVFGRD96 15.0 110 60 -60 4.77 0.5267 WVFGRD96 16.0 110 60 -60 4.77 0.4965 WVFGRD96 17.0 110 60 -60 4.79 0.4611 WVFGRD96 18.0 105 35 -55 4.80 0.4343 WVFGRD96 19.0 105 35 -55 4.81 0.4165 WVFGRD96 20.0 95 30 -65 4.82 0.4001 WVFGRD96 21.0 95 30 -65 4.83 0.3842 WVFGRD96 22.0 90 30 -75 4.85 0.3693 WVFGRD96 23.0 85 30 -80 4.86 0.3548 WVFGRD96 24.0 90 30 -75 4.87 0.3410 WVFGRD96 25.0 90 30 -75 4.87 0.3280
The best solution is
WVFGRD96 12.0 115 65 -55 4.72 0.5750
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.04 n 3 lp c 0.20 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The t6.invSNU.CUVEL used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 30 iterations ISOTROPIC KGS SPHERICAL EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.3800 3.0009 2.5772 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 1.0000 5.8057 3.2383 2.6606 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 1.0000 6.1732 3.4433 2.7513 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 3.0000 6.2872 3.5067 2.7862 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 6.3245 3.5281 2.7970 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 6.4165 3.5788 2.8248 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 4.0000 6.5576 3.6576 2.8653 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 6.6402 3.7038 2.8865 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 2.5000 6.6540 3.7115 2.8897 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 2.5000 7.0960 3.9579 3.0111 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 2.5000 7.9155 4.4148 3.2804 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 2.5000 7.8925 4.4019 3.2735 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.8665 4.3876 3.2643 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.5675 4.2211 3.1625 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.7550 4.3252 3.2262 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.7602 4.3280 3.2282 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.7958 4.3487 3.2398 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.7415 4.3195 3.2217 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6497 4.2688 3.1915 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6408 4.2653 3.1889 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6666 4.2716 3.1976 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6699 4.2830 3.1986 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6780 4.2885 3.2014 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6816 4.2896 3.2028 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6946 4.2996 3.2072 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 10.0000 7.7349 4.3197 3.2208 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 10.0000 7.7791 4.3484 3.2355 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 10.0000 7.8331 4.3722 3.2536 0.862E-02 0.131E-01 0.00 0.00 1.00 1.00 10.0000 7.8824 4.3863 3.2703 0.862E-02 0.131E-01 0.00 0.00 1.00 1.00 10.0000 7.9360 4.4024 3.2883 0.855E-02 0.131E-01 0.00 0.00 1.00 1.00 10.0000 7.9967 4.4237 3.3088 0.847E-02 0.131E-01 0.00 0.00 1.00 1.00 10.0000 8.0529 4.4423 3.3289 0.847E-02 0.131E-01 0.00 0.00 1.00 1.00 10.0000 8.1110 4.4603 3.3496 0.833E-02 0.130E-01 0.00 0.00 1.00 1.00 10.0000 8.1762 4.4832 3.3728 0.826E-02 0.129E-01 0.00 0.00 1.00 1.00 10.0000 8.2410 4.5054 3.3959 0.813E-02 0.128E-01 0.00 0.00 1.00 1.00 10.0000 8.3022 4.5257 3.4176 0.806E-02 0.126E-01 0.00 0.00 1.00 1.00 10.0000 8.3635 4.5514 3.4395 0.474E-02 0.746E-02 0.00 0.00 1.00 1.00 10.0000 8.4257 4.5839 3.4617 0.472E-02 0.741E-02 0.00 0.00 1.00 1.00 10.0000 8.4845 4.6145 3.4827 0.469E-02 0.741E-02 0.00 0.00 1.00 1.00 10.0000 8.5403 4.6434 3.5020 0.467E-02 0.735E-02 0.00 0.00 1.00 1.00 10.0000 8.5934 4.6708 3.5199 0.465E-02 0.735E-02 0.00 0.00 1.00 1.00 10.0000 8.6436 4.6959 3.5369 0.463E-02 0.730E-02 0.00 0.00 1.00 1.00 10.0000 8.6912 4.7194 3.5530 0.461E-02 0.730E-02 0.00 0.00 1.00 1.00 10.0000 8.7365 4.7413 3.5684 0.459E-02 0.725E-02 0.00 0.00 1.00 1.00 10.0000 8.7797 4.7622 3.5831 0.455E-02 0.725E-02 0.00 0.00 1.00 1.00 10.0000 8.8199 4.7819 3.5967 0.452E-02 0.719E-02 0.00 0.00 1.00 1.00 10.0000 8.8587 4.8001 3.6099 0.450E-02 0.714E-02 0.00 0.00 1.00 1.00 10.0000 8.8958 4.8177 3.6226 0.448E-02 0.714E-02 0.00 0.00 1.00 1.00 10.0000 8.9314 4.8346 3.6347 0.446E-02 0.709E-02 0.00 0.00 1.00 1.00 10.0000 8.9647 4.8500 3.6461 0.442E-02 0.704E-02 0.00 0.00 1.00 1.00 10.0000 8.9962 4.8651 3.6569 0.441E-02 0.704E-02 0.00 0.00 1.00 1.00 10.0000 9.0263 4.8783 3.6685 0.439E-02 0.699E-02 0.00 0.00 1.00 1.00 10.0000 9.0547 4.8915 3.6800 0.435E-02 0.694E-02 0.00 0.00 1.00 1.00 10.0000 9.0822 4.9041 3.6911 0.433E-02 0.690E-02 0.00 0.00 1.00 1.00 10.0000 9.1091 4.9164 3.7020 0.431E-02 0.690E-02 0.00 0.00 1.00 1.00 10.0000 9.1346 4.9280 3.7123 0.427E-02 0.685E-02 0.00 0.00 1.00 1.00 10.0000 9.4876 5.1513 3.8537 0.388E-02 0.613E-02 0.00 0.00 1.00 1.00 10.0000 9.5095 5.1663 3.8624 0.388E-02 0.613E-02 0.00 0.00 1.00 1.00 10.0000 9.5299 5.1806 3.8703 0.386E-02 0.610E-02 0.00 0.00 1.00 1.00 10.0000 9.5507 5.1944 3.8784 0.386E-02 0.610E-02 0.00 0.00 1.00 1.00 10.0000 9.5706 5.2080 3.8861 0.385E-02 0.606E-02 0.00 0.00 1.00 1.00 10.0000 9.5900 5.2214 3.8937 0.385E-02 0.606E-02 0.00 0.00 1.00 1.00 10.0000 9.6090 5.2347 3.9011 0.383E-02 0.606E-02 0.00 0.00 1.00 1.00 10.0000 9.6272 5.2480 3.9081 0.383E-02 0.602E-02 0.00 0.00 1.00 1.00 10.0000 9.6458 5.2604 3.9154 0.383E-02 0.602E-02 0.00 0.00 1.00 1.00 10.0000 9.6794 5.2816 3.9282 0.382E-02 0.599E-02 0.00 0.00 1.00 1.00 10.0000 9.7130 5.3029 3.9409 0.382E-02 0.599E-02 0.00 0.00 1.00 1.00 10.0000 9.7466 5.3242 3.9537 0.380E-02 0.599E-02 0.00 0.00 1.00 1.00 10.0000 9.7799 5.3454 3.9664 0.380E-02 0.595E-02 0.00 0.00 1.00 1.00 10.0000 9.8137 5.3669 3.9792 0.380E-02 0.595E-02 0.00 0.00 1.00 1.00 10.0000 9.8473 5.3883 3.9920 0.379E-02 0.592E-02 0.00 0.00 1.00 1.00 10.0000 9.8808 5.4094 4.0047 0.379E-02 0.592E-02 0.00 0.00 1.00 1.00 0.0000 9.9144 5.4306 4.0175 0.377E-02 0.592E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files: