2008/05/31 12:59:30 33.50 125.69 10.0 4.2 Korea
USGS Felt map for this earthquake
SLU Moment Tensor Solution 2008/05/31 12:59:30 33.50 125.69 10.0 4.2 Korea Best Fitting Double Couple Mo = 9.89e+21 dyne-cm Mw = 3.93 Z = 13 km Plane Strike Dip Rake NP1 195 90 -160 NP2 105 70 0 Principal Axes: Axis Value Plunge Azimuth T 9.89e+21 14 328 N 0.00e+00 70 195 P -9.89e+21 14 62 Moment Tensor: (dyne-cm) Component Value Mxx 4.64e+21 Mxy -8.04e+21 Mxz 8.75e+20 Myy -4.64e+21 Myz -3.27e+21 Mzz 0.00e+00 ############-- #############------ ### T ############---------- #### ############----------- ####################-------------- #####################----------- - #####################------------ P -- ######################------------ --- -####################------------------- ----##################-------------------- ------###############--------------------- ---------############--------------------- -------------#######---------------------- ------------------#--------------------- ------------------#########---------#### -----------------##################### ---------------##################### --------------#################### -----------################### ----------################## ------################ --############ Harvard Convention Moment Tensor: R T F 0.00e+00 8.75e+20 3.27e+21 8.75e+20 4.64e+21 8.04e+21 3.27e+21 8.04e+21 -4.64e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.KR/20080531125930/index.html |
STK = 105 DIP = 70 RAKE = 0 MW = 3.93 HS = 13.0
The waveform inversion is preferred. The surface-wave data do not have sufficient sampling of azimuth to define radiation patterns
The following compares this source inversion to others
SLU Moment Tensor Solution 2008/05/31 12:59:30 33.50 125.69 10.0 4.2 Korea Best Fitting Double Couple Mo = 9.89e+21 dyne-cm Mw = 3.93 Z = 13 km Plane Strike Dip Rake NP1 195 90 -160 NP2 105 70 0 Principal Axes: Axis Value Plunge Azimuth T 9.89e+21 14 328 N 0.00e+00 70 195 P -9.89e+21 14 62 Moment Tensor: (dyne-cm) Component Value Mxx 4.64e+21 Mxy -8.04e+21 Mxz 8.75e+20 Myy -4.64e+21 Myz -3.27e+21 Mzz 0.00e+00 ############-- #############------ ### T ############---------- #### ############----------- ####################-------------- #####################----------- - #####################------------ P -- ######################------------ --- -####################------------------- ----##################-------------------- ------###############--------------------- ---------############--------------------- -------------#######---------------------- ------------------#--------------------- ------------------#########---------#### -----------------##################### ---------------##################### --------------#################### -----------################### ----------################## ------################ --############ Harvard Convention Moment Tensor: R T F 0.00e+00 8.75e+20 3.27e+21 8.75e+20 4.64e+21 8.04e+21 3.27e+21 8.04e+21 -4.64e+21 Details of the solution is found at http://www.eas.slu.edu/Earthquake_Center/MECH.KR/20080531125930/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 270 60 -35 3.84 0.5917 WVFGRD96 1.0 95 50 -20 3.84 0.5867 WVFGRD96 2.0 100 60 -10 3.82 0.6131 WVFGRD96 3.0 100 65 -5 3.83 0.6451 WVFGRD96 4.0 100 65 -5 3.84 0.6701 WVFGRD96 5.0 100 70 -5 3.85 0.6890 WVFGRD96 6.0 100 70 -5 3.86 0.7062 WVFGRD96 7.0 100 70 -5 3.87 0.7204 WVFGRD96 8.0 100 70 -5 3.88 0.7320 WVFGRD96 9.0 100 70 -5 3.89 0.7410 WVFGRD96 10.0 100 70 -5 3.90 0.7470 WVFGRD96 11.0 100 70 -5 3.91 0.7507 WVFGRD96 12.0 105 70 0 3.92 0.7523 WVFGRD96 13.0 105 70 0 3.93 0.7525 WVFGRD96 14.0 105 70 5 3.94 0.7507 WVFGRD96 15.0 105 70 5 3.95 0.7474 WVFGRD96 16.0 105 70 5 3.95 0.7423 WVFGRD96 17.0 110 70 5 3.97 0.7352 WVFGRD96 18.0 110 70 5 3.98 0.7279 WVFGRD96 19.0 110 70 5 3.99 0.7198 WVFGRD96 20.0 110 70 5 3.99 0.7105 WVFGRD96 21.0 110 70 10 4.00 0.7005 WVFGRD96 22.0 110 70 10 4.01 0.6895 WVFGRD96 23.0 110 70 10 4.02 0.6778 WVFGRD96 24.0 110 75 5 4.02 0.6664 WVFGRD96 25.0 110 75 5 4.03 0.6570
The best solution is
WVFGRD96 13.0 105 70 0 3.93 0.7525
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
The following figure shows the stations used in the grid search for the best focal mechanism to fit the surface-wave spectral amplitudes of the Love and Rayleigh waves.
![]() |
|
The surface-wave determined focal mechanism is shown here.
NODAL PLANES STK= 199.99 DIP= 80.00 RAKE= -165.00 OR STK= 107.32 DIP= 75.23 RAKE= -10.35 DEPTH = 20.0 km Mw = 4.01 Best Fit 0.8402 - P-T axis plot gives solutions with FIT greater than FIT90
![]() |
The P-wave first motion data for focal mechanism studies are as follow:
Sta Az Dist First motion JJU 95 80 iP_D KWJ 33 220 eP_X BUS 57 370 eP_X SES 11 371 eP_X DAG 49 387 iP_D CHJ 28 428 eP_X SEO 14 456 eP_X ULJ 43 491 eP_X CHC 21 512 eP_X DGY 29 538 eP_+
Surface wave analysis was performed using codes from Computer Programs in Seismology, specifically the multiple filter analysis program do_mft and the surface-wave radiation pattern search program srfgrd96.
Digital data were collected, instrument response removed and traces converted
to Z, R an T components. Multiple filter analysis was applied to the Z and T traces to obtain the Rayleigh- and Love-wave spectral amplitudes, respectively.
These were input to the search program which examined all depths between 1 and 25 km
and all possible mechanisms.
![]() |
|
![]() |
Pressure-tension axis trends. Since the surface-wave spectra search does not distinguish between P and T axes and since there is a 180 ambiguity in strike, all possible P and T axes are plotted. First motion data and waveforms will be used to select the preferred mechanism. The purpose of this plot is to provide an idea of the possible range of solutions. The P and T-axes for all mechanisms with goodness of fit greater than 0.9 FITMAX (above) are plotted here. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the Love and Rayleigh wave radiation patterns. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. Because of the symmetry of the spectral amplitude rediation patterns, only strikes from 0-180 degrees are sampled. |
The distribution of broadband stations with azimuth and distance is
Listing of broadband stations used
Since the analysis of the surface-wave radiation patterns uses only spectral amplitudes and because the surfave-wave radiation patterns have a 180 degree symmetry, each surface-wave solution consists of four possible focal mechanisms corresponding to the interchange of the P- and T-axes and a roation of the mechanism by 180 degrees. To select one mechanism, P-wave first motion can be used. This was not possible in this case because all the P-wave first motions were emergent ( a feature of the P-wave wave takeoff angle, the station location and the mechanism). The other way to select among the mechanisms is to compute forward synthetics and compare the observed and predicted waveforms.
The fits to the waveforms with the given mechanism are show below:
![]() |
This figure shows the fit to the three components of motion (Z - vertical, R-radial and T - transverse). For each station and component, the observed traces is shown in red and the model predicted trace in blue. The traces represent filtered ground velocity in units of meters/sec (the peak value is printed adjacent to each trace; each pair of traces to plotted to the same scale to emphasize the difference in levels). Both synthetic and observed traces have been filtered using the SAC commands:
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
![]() |
The digital data are provided by the Korea Meteorological Administration.
The t6.invSNU.CUVEL used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 30 iterations ISOTROPIC KGS SPHERICAL EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.3800 3.0009 2.5772 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 1.0000 5.8057 3.2383 2.6606 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 1.0000 6.1732 3.4433 2.7513 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 3.0000 6.2872 3.5067 2.7862 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 6.3245 3.5281 2.7970 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 6.4165 3.5788 2.8248 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 4.0000 6.5576 3.6576 2.8653 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 6.6402 3.7038 2.8865 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 2.5000 6.6540 3.7115 2.8897 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 2.5000 7.0960 3.9579 3.0111 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 2.5000 7.9155 4.4148 3.2804 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 2.5000 7.8925 4.4019 3.2735 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.8665 4.3876 3.2643 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.5675 4.2211 3.1625 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.7550 4.3252 3.2262 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.7602 4.3280 3.2282 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.7958 4.3487 3.2398 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.7415 4.3195 3.2217 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6497 4.2688 3.1915 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6408 4.2653 3.1889 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6666 4.2716 3.1976 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6699 4.2830 3.1986 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6780 4.2885 3.2014 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6816 4.2896 3.2028 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 5.0000 7.6946 4.2996 3.2072 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 10.0000 7.7349 4.3197 3.2208 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 10.0000 7.7791 4.3484 3.2355 0.118E-02 0.167E-02 0.00 0.00 1.00 1.00 10.0000 7.8331 4.3722 3.2536 0.862E-02 0.131E-01 0.00 0.00 1.00 1.00 10.0000 7.8824 4.3863 3.2703 0.862E-02 0.131E-01 0.00 0.00 1.00 1.00 10.0000 7.9360 4.4024 3.2883 0.855E-02 0.131E-01 0.00 0.00 1.00 1.00 10.0000 7.9967 4.4237 3.3088 0.847E-02 0.131E-01 0.00 0.00 1.00 1.00 10.0000 8.0529 4.4423 3.3289 0.847E-02 0.131E-01 0.00 0.00 1.00 1.00 10.0000 8.1110 4.4603 3.3496 0.833E-02 0.130E-01 0.00 0.00 1.00 1.00 10.0000 8.1762 4.4832 3.3728 0.826E-02 0.129E-01 0.00 0.00 1.00 1.00 10.0000 8.2410 4.5054 3.3959 0.813E-02 0.128E-01 0.00 0.00 1.00 1.00 10.0000 8.3022 4.5257 3.4176 0.806E-02 0.126E-01 0.00 0.00 1.00 1.00 10.0000 8.3635 4.5514 3.4395 0.474E-02 0.746E-02 0.00 0.00 1.00 1.00 10.0000 8.4257 4.5839 3.4617 0.472E-02 0.741E-02 0.00 0.00 1.00 1.00 10.0000 8.4845 4.6145 3.4827 0.469E-02 0.741E-02 0.00 0.00 1.00 1.00 10.0000 8.5403 4.6434 3.5020 0.467E-02 0.735E-02 0.00 0.00 1.00 1.00 10.0000 8.5934 4.6708 3.5199 0.465E-02 0.735E-02 0.00 0.00 1.00 1.00 10.0000 8.6436 4.6959 3.5369 0.463E-02 0.730E-02 0.00 0.00 1.00 1.00 10.0000 8.6912 4.7194 3.5530 0.461E-02 0.730E-02 0.00 0.00 1.00 1.00 10.0000 8.7365 4.7413 3.5684 0.459E-02 0.725E-02 0.00 0.00 1.00 1.00 10.0000 8.7797 4.7622 3.5831 0.455E-02 0.725E-02 0.00 0.00 1.00 1.00 10.0000 8.8199 4.7819 3.5967 0.452E-02 0.719E-02 0.00 0.00 1.00 1.00 10.0000 8.8587 4.8001 3.6099 0.450E-02 0.714E-02 0.00 0.00 1.00 1.00 10.0000 8.8958 4.8177 3.6226 0.448E-02 0.714E-02 0.00 0.00 1.00 1.00 10.0000 8.9314 4.8346 3.6347 0.446E-02 0.709E-02 0.00 0.00 1.00 1.00 10.0000 8.9647 4.8500 3.6461 0.442E-02 0.704E-02 0.00 0.00 1.00 1.00 10.0000 8.9962 4.8651 3.6569 0.441E-02 0.704E-02 0.00 0.00 1.00 1.00 10.0000 9.0263 4.8783 3.6685 0.439E-02 0.699E-02 0.00 0.00 1.00 1.00 10.0000 9.0547 4.8915 3.6800 0.435E-02 0.694E-02 0.00 0.00 1.00 1.00 10.0000 9.0822 4.9041 3.6911 0.433E-02 0.690E-02 0.00 0.00 1.00 1.00 10.0000 9.1091 4.9164 3.7020 0.431E-02 0.690E-02 0.00 0.00 1.00 1.00 10.0000 9.1346 4.9280 3.7123 0.427E-02 0.685E-02 0.00 0.00 1.00 1.00 10.0000 9.4876 5.1513 3.8537 0.388E-02 0.613E-02 0.00 0.00 1.00 1.00 10.0000 9.5095 5.1663 3.8624 0.388E-02 0.613E-02 0.00 0.00 1.00 1.00 10.0000 9.5299 5.1806 3.8703 0.386E-02 0.610E-02 0.00 0.00 1.00 1.00 10.0000 9.5507 5.1944 3.8784 0.386E-02 0.610E-02 0.00 0.00 1.00 1.00 10.0000 9.5706 5.2080 3.8861 0.385E-02 0.606E-02 0.00 0.00 1.00 1.00 10.0000 9.5900 5.2214 3.8937 0.385E-02 0.606E-02 0.00 0.00 1.00 1.00 10.0000 9.6090 5.2347 3.9011 0.383E-02 0.606E-02 0.00 0.00 1.00 1.00 10.0000 9.6272 5.2480 3.9081 0.383E-02 0.602E-02 0.00 0.00 1.00 1.00 10.0000 9.6458 5.2604 3.9154 0.383E-02 0.602E-02 0.00 0.00 1.00 1.00 10.0000 9.6794 5.2816 3.9282 0.382E-02 0.599E-02 0.00 0.00 1.00 1.00 10.0000 9.7130 5.3029 3.9409 0.382E-02 0.599E-02 0.00 0.00 1.00 1.00 10.0000 9.7466 5.3242 3.9537 0.380E-02 0.599E-02 0.00 0.00 1.00 1.00 10.0000 9.7799 5.3454 3.9664 0.380E-02 0.595E-02 0.00 0.00 1.00 1.00 10.0000 9.8137 5.3669 3.9792 0.380E-02 0.595E-02 0.00 0.00 1.00 1.00 10.0000 9.8473 5.3883 3.9920 0.379E-02 0.592E-02 0.00 0.00 1.00 1.00 10.0000 9.8808 5.4094 4.0047 0.379E-02 0.592E-02 0.00 0.00 1.00 1.00 0.0000 9.9144 5.4306 4.0175 0.377E-02 0.592E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Sat May 31 20:20:58 CDT 2008