2019/01/14 23:03:56 44.37 12.32 25.0 4.3 Ravena (RA)
USGS Felt map for this earthquake
SLU Moment Tensor Solution ENS 2019/01/14 23:03:56:0 44.37 12.32 25.0 4.3 Ravena (RA) Stations used: CH.BERNI CH.FUORN CH.PANIX CH.PLONS CH.VDL GU.POPM IV.APEC IV.ARVD IV.ASSB IV.ATFO IV.ATMI IV.ATPC IV.ATTE IV.ATVO IV.BDI IV.BRIS IV.CAFI IV.CELB IV.CESX IV.CRE IV.CSNT IV.CTI IV.FDMO IV.FIAM IV.FNVD IV.GUMA IV.LATE IV.LMD IV.MAGA IV.MGAB IV.MOMA IV.MTRZ IV.MURB IV.NARO IV.NRCA IV.OFFI IV.OSSC IV.PARC IV.PIEI IV.PII IV.PLMA IV.SNTG IV.SSFR IV.VIVA MN.TRI MN.TUE MN.VLC NI.PALA NI.VINO OX.BALD OX.DRE RD.PGF SI.BOSI SI.KOSI SI.LUSI SI.MOSI SI.ROSI ST.DOSS Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 4.84e+22 dyne-cm Mw = 4.39 Z = 16 km Plane Strike Dip Rake NP1 312 56 97 NP2 120 35 80 Principal Axes: Axis Value Plunge Azimuth T 4.84e+22 78 247 N 0.00e+00 6 128 P -4.84e+22 10 37 Moment Tensor: (dyne-cm) Component Value Mxx -2.94e+22 Mxy -2.18e+22 Mxz -1.07e+22 Myy -1.54e+22 Myz -1.41e+22 Mzz 4.48e+22 -------------- -------------------- ----------------------- P -- #######----------------- --- ##############-------------------- ###################----------------- -######################--------------- --########################-------------- --##########################------------ ---###########################------------ ----############# ############---------- ----############# T #############--------- -----############ ##############-------- -----#############################------ -------############################----- --------##########################---- ---------########################--- -----------#####################-# -------------##############--- ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 4.48e+22 -1.07e+22 1.41e+22 -1.07e+22 -2.94e+22 2.18e+22 1.41e+22 2.18e+22 -1.54e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20190114230356/index.html |
STK = 120 DIP = 35 RAKE = 80 MW = 4.39 HS = 16.0
The NDK file is 20190114230356.ndk The RESP files wrom WebD3 for INGV (e.g., MAGA) were incorrect. The problem was that the Stage 3 FIR has a gain that was huge instead of 1.0. I used the pole-zero which ignores the FIR. evalresp could not be used
The following compares this source inversion to others
SLU Moment Tensor Solution ENS 2019/01/14 23:03:56:0 44.37 12.32 25.0 4.3 Ravena (RA) Stations used: CH.BERNI CH.FUORN CH.PANIX CH.PLONS CH.VDL GU.POPM IV.APEC IV.ARVD IV.ASSB IV.ATFO IV.ATMI IV.ATPC IV.ATTE IV.ATVO IV.BDI IV.BRIS IV.CAFI IV.CELB IV.CESX IV.CRE IV.CSNT IV.CTI IV.FDMO IV.FIAM IV.FNVD IV.GUMA IV.LATE IV.LMD IV.MAGA IV.MGAB IV.MOMA IV.MTRZ IV.MURB IV.NARO IV.NRCA IV.OFFI IV.OSSC IV.PARC IV.PIEI IV.PII IV.PLMA IV.SNTG IV.SSFR IV.VIVA MN.TRI MN.TUE MN.VLC NI.PALA NI.VINO OX.BALD OX.DRE RD.PGF SI.BOSI SI.KOSI SI.LUSI SI.MOSI SI.ROSI ST.DOSS Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 4.84e+22 dyne-cm Mw = 4.39 Z = 16 km Plane Strike Dip Rake NP1 312 56 97 NP2 120 35 80 Principal Axes: Axis Value Plunge Azimuth T 4.84e+22 78 247 N 0.00e+00 6 128 P -4.84e+22 10 37 Moment Tensor: (dyne-cm) Component Value Mxx -2.94e+22 Mxy -2.18e+22 Mxz -1.07e+22 Myy -1.54e+22 Myz -1.41e+22 Mzz 4.48e+22 -------------- -------------------- ----------------------- P -- #######----------------- --- ##############-------------------- ###################----------------- -######################--------------- --########################-------------- --##########################------------ ---###########################------------ ----############# ############---------- ----############# T #############--------- -----############ ##############-------- -----#############################------ -------############################----- --------##########################---- ---------########################--- -----------#####################-# -------------##############--- ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 4.48e+22 -1.07e+22 1.41e+22 -1.07e+22 -2.94e+22 2.18e+22 1.41e+22 2.18e+22 -1.54e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20190114230356/index.html |
|
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 35 45 -90 4.18 0.2802 WVFGRD96 2.0 130 50 85 4.21 0.2672 WVFGRD96 3.0 110 90 65 4.32 0.2710 WVFGRD96 4.0 290 90 -65 4.30 0.2948 WVFGRD96 5.0 135 90 95 4.43 0.3236 WVFGRD96 6.0 250 5 25 4.41 0.3557 WVFGRD96 7.0 330 10 110 4.40 0.3843 WVFGRD96 8.0 300 15 75 4.35 0.4097 WVFGRD96 9.0 295 15 70 4.35 0.4281 WVFGRD96 10.0 300 20 75 4.36 0.4419 WVFGRD96 11.0 295 20 70 4.36 0.4531 WVFGRD96 12.0 295 25 70 4.36 0.4606 WVFGRD96 13.0 295 25 70 4.36 0.4644 WVFGRD96 14.0 295 30 70 4.37 0.4655 WVFGRD96 15.0 125 35 85 4.39 0.4650 WVFGRD96 16.0 120 35 80 4.39 0.4661 WVFGRD96 17.0 120 35 75 4.39 0.4642 WVFGRD96 18.0 115 35 70 4.39 0.4607 WVFGRD96 19.0 115 35 70 4.39 0.4555 WVFGRD96 20.0 110 35 65 4.39 0.4487 WVFGRD96 21.0 110 35 65 4.39 0.4409 WVFGRD96 22.0 110 35 60 4.40 0.4324 WVFGRD96 23.0 105 35 55 4.41 0.4235 WVFGRD96 24.0 105 35 55 4.41 0.4141 WVFGRD96 25.0 105 35 55 4.41 0.4041 WVFGRD96 26.0 105 35 55 4.42 0.3935 WVFGRD96 27.0 105 35 55 4.42 0.3824 WVFGRD96 28.0 100 35 50 4.43 0.3710 WVFGRD96 29.0 110 30 60 4.43 0.3601
The best solution is
WVFGRD96 16.0 120 35 80 4.39 0.4661
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3 ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Tue Jan 15 09:44:11 CST 2019