2018/04/10 03:11:30 43.07 13.04 8.0 4.6 Amatrice
USGS Felt map for this earthquake
SLU Moment Tensor Solution ENS 2018/04/10 03:11:30:0 43.07 13.04 8.0 4.6 Amatrice Stations used: IV.AOI IV.ARVD IV.ATMI IV.CAFI IV.CASP IV.CELB IV.CERA IV.CERT IV.CING IV.CRE IV.CSNT IV.FIAM IV.GIUL IV.GUAR IV.LATE IV.LAV9 IV.LNSS IV.LPEL IV.MA9 IV.MGAB IV.MOMA IV.MTCE IV.OFFI IV.OSSC IV.PARC IV.PIEI IV.POFI IV.PTQR IV.RMP IV.SACS IV.SAMA IV.SSFR IV.TERO Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 9.02e+22 dyne-cm Mw = 4.57 Z = 5 km Plane Strike Dip Rake NP1 160 60 -65 NP2 297 38 -126 Principal Axes: Axis Value Plunge Azimuth T 9.02e+22 12 232 N 0.00e+00 21 327 P -9.02e+22 65 116 Moment Tensor: (dyne-cm) Component Value Mxx 2.95e+22 Mxy 4.80e+22 Mxz 3.93e+21 Myy 4.13e+22 Myz -4.49e+22 Mzz -7.08e+22 ############## ---################### -----####################### -------------################# --######--------------############ #########-----------------########## ##########--------------------######## ###########----------------------####### ###########-----------------------###### ############------------------------###### #############------------------------##### #############------------ ----------#### ##############----------- P -----------### ##############---------- -----------## ###############------------------------# ##############------------------------ ## ##########--------------------- # T ###########------------------- ############---------------- ###############------------- ##############-------- ############## Global CMT Convention Moment Tensor: R T P -7.08e+22 3.93e+21 4.49e+22 3.93e+21 2.95e+22 -4.80e+22 4.49e+22 -4.80e+22 4.13e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20180410031130/index.html |
STK = 160 DIP = 60 RAKE = -65 MW = 4.57 HS = 5.0
The NDK file is 20180410031130.ndk The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution ENS 2018/04/10 03:11:30:0 43.07 13.04 8.0 4.6 Amatrice Stations used: IV.AOI IV.ARVD IV.ATMI IV.CAFI IV.CASP IV.CELB IV.CERA IV.CERT IV.CING IV.CRE IV.CSNT IV.FIAM IV.GIUL IV.GUAR IV.LATE IV.LAV9 IV.LNSS IV.LPEL IV.MA9 IV.MGAB IV.MOMA IV.MTCE IV.OFFI IV.OSSC IV.PARC IV.PIEI IV.POFI IV.PTQR IV.RMP IV.SACS IV.SAMA IV.SSFR IV.TERO Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 9.02e+22 dyne-cm Mw = 4.57 Z = 5 km Plane Strike Dip Rake NP1 160 60 -65 NP2 297 38 -126 Principal Axes: Axis Value Plunge Azimuth T 9.02e+22 12 232 N 0.00e+00 21 327 P -9.02e+22 65 116 Moment Tensor: (dyne-cm) Component Value Mxx 2.95e+22 Mxy 4.80e+22 Mxz 3.93e+21 Myy 4.13e+22 Myz -4.49e+22 Mzz -7.08e+22 ############## ---################### -----####################### -------------################# --######--------------############ #########-----------------########## ##########--------------------######## ###########----------------------####### ###########-----------------------###### ############------------------------###### #############------------------------##### #############------------ ----------#### ##############----------- P -----------### ##############---------- -----------## ###############------------------------# ##############------------------------ ## ##########--------------------- # T ###########------------------- ############---------------- ###############------------- ##############-------- ############## Global CMT Convention Moment Tensor: R T P -7.08e+22 3.93e+21 4.49e+22 3.93e+21 2.95e+22 -4.80e+22 4.49e+22 -4.80e+22 4.13e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20180410031130/index.html |
|
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 175 65 -45 4.32 0.4500 WVFGRD96 2.0 175 75 -55 4.42 0.5101 WVFGRD96 3.0 170 70 -55 4.44 0.5784 WVFGRD96 4.0 160 60 -65 4.49 0.6180 WVFGRD96 5.0 160 60 -65 4.57 0.6551 WVFGRD96 6.0 160 60 -65 4.57 0.6481 WVFGRD96 7.0 170 65 -55 4.54 0.6151 WVFGRD96 8.0 180 75 -35 4.50 0.5734 WVFGRD96 9.0 180 80 -35 4.50 0.5524 WVFGRD96 10.0 180 80 -35 4.51 0.5306 WVFGRD96 11.0 180 80 -35 4.52 0.5086 WVFGRD96 12.0 180 80 -35 4.53 0.4854 WVFGRD96 13.0 185 90 -30 4.53 0.4624 WVFGRD96 14.0 5 85 30 4.54 0.4398 WVFGRD96 15.0 5 75 -25 4.57 0.4218 WVFGRD96 16.0 5 75 -25 4.58 0.4092 WVFGRD96 17.0 5 75 -25 4.59 0.3963 WVFGRD96 18.0 5 75 -25 4.60 0.3828 WVFGRD96 19.0 5 75 -25 4.60 0.3689
The best solution is
WVFGRD96 5.0 160 60 -65 4.57 0.6551
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3 ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Tue Apr 10 08:17:47 CDT 2018