2017/01/18 09:25:40 42.5470 13.2620 9.2 5.30
SLU Moment Tensor Solution ENS 2017/01/18 09:25:40:3 42.55 13.26 9.2 5.3 Stations used: IV.ATFO IV.ATMI IV.ATVO IV.CERT IV.CESI IV.CESX IV.FIAM IV.GIGS IV.GIUL IV.GUAR IV.LATE IV.LAV9 IV.LPEL IV.LRP IV.MA9 IV.MGAB IV.MOMA IV.MTCE IV.MURB IV.POFI IV.PTQR IV.RMP IV.SACS IV.SAMA IV.SNTG IV.SRES IV.SSFR IV.T0110 IV.TRTR IV.VIVA IV.VVLD Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 6.03e+23 dyne-cm Mw = 5.12 Z = 6 km Plane Strike Dip Rake NP1 329 60 -93 NP2 155 30 -85 Principal Axes: Axis Value Plunge Azimuth T 6.03e+23 15 61 N 0.00e+00 2 331 P -6.03e+23 75 231 Moment Tensor: (dyne-cm) Component Value Mxx 1.13e+23 Mxy 2.16e+23 Mxz 1.68e+23 Myy 4.07e+23 Myz 2.53e+23 Mzz -5.20e+23 ############## #-#################### ##-------################### ##-----------################# ###--------------################# ####----------------############ # ####------------------########### T ## #####--------------------######### ### #####---------------------############## ######----------------------############## ######-----------------------############# ######---------- -----------############ ######---------- P ------------########### ######--------- ------------########## #######------------------------######### #######-----------------------######## #######----------------------####### ########--------------------###### #######-------------------#### #########----------------### #########------------- ############## Global CMT Convention Moment Tensor: R T P -5.20e+23 1.68e+23 -2.53e+23 1.68e+23 1.13e+23 -2.16e+23 -2.53e+23 -2.16e+23 4.07e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20170118092540/index.html |
STK = 155 DIP = 30 RAKE = -85 MW = 5.12 HS = 6.0
The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution ENS 2017/01/18 09:25:40:3 42.55 13.26 9.2 5.3 Stations used: IV.ATFO IV.ATMI IV.ATVO IV.CERT IV.CESI IV.CESX IV.FIAM IV.GIGS IV.GIUL IV.GUAR IV.LATE IV.LAV9 IV.LPEL IV.LRP IV.MA9 IV.MGAB IV.MOMA IV.MTCE IV.MURB IV.POFI IV.PTQR IV.RMP IV.SACS IV.SAMA IV.SNTG IV.SRES IV.SSFR IV.T0110 IV.TRTR IV.VIVA IV.VVLD Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 6.03e+23 dyne-cm Mw = 5.12 Z = 6 km Plane Strike Dip Rake NP1 329 60 -93 NP2 155 30 -85 Principal Axes: Axis Value Plunge Azimuth T 6.03e+23 15 61 N 0.00e+00 2 331 P -6.03e+23 75 231 Moment Tensor: (dyne-cm) Component Value Mxx 1.13e+23 Mxy 2.16e+23 Mxz 1.68e+23 Myy 4.07e+23 Myz 2.53e+23 Mzz -5.20e+23 ############## #-#################### ##-------################### ##-----------################# ###--------------################# ####----------------############ # ####------------------########### T ## #####--------------------######### ### #####---------------------############## ######----------------------############## ######-----------------------############# ######---------- -----------############ ######---------- P ------------########### ######--------- ------------########## #######------------------------######### #######-----------------------######## #######----------------------####### ########--------------------###### #######-------------------#### #########----------------### #########------------- ############## Global CMT Convention Moment Tensor: R T P -5.20e+23 1.68e+23 -2.53e+23 1.68e+23 1.13e+23 -2.16e+23 -2.53e+23 -2.16e+23 4.07e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20170118092540/index.html |
January 18, 2017, CENTRAL ITALY, MW=5.4 Meredith Nettles CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C201701180925A DATA: II IU CU IC LD G GE DK MN KP L.P.BODY WAVES:105S, 168C, T= 40 SURFACE WAVES: 130S, 248C, T= 50 TIMESTAMP: Q-20170118102313 CENTROID LOCATION: ORIGIN TIME: 09:25:44.6 0.1 LAT:42.49N 0.01;LON: 13.26E 0.01 DEP: 12.9 0.3;TRIANG HDUR: 1.2 MOMENT TENSOR: SCALE 10**24 D-CM RR=-1.270 0.023; TT= 0.236 0.017 PP= 1.040 0.017; RT=-0.193 0.042 RP=-0.487 0.039; TP=-0.562 0.013 PRINCIPAL AXES: 1.(T) VAL= 1.376;PLG= 8;AZM= 65 2.(N) 0.057; 15; 157 3.(P) -1.426; 73; 309 BEST DBLE.COUPLE:M0= 1.40*10**24 NP1: STRIKE=138;DIP=40;SLIP=-115 NP2: STRIKE=348;DIP=55;SLIP= -71 ---######## ----------######### --------------######### ##---------------########## ##-----------------######## ###------------------####### T ###-------- --------###### ####-------- P --------########## #####------- ---------######### #####-------------------######### ######------------------######### ######-----------------######## ########---------------######## #########-------------####### ##########----------####### ############------##### ###############---- #########-- |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 165 50 -75 4.88 0.4291 WVFGRD96 2.0 185 30 -35 4.95 0.4428 WVFGRD96 3.0 180 30 -50 4.97 0.5067 WVFGRD96 4.0 160 30 -80 5.01 0.5684 WVFGRD96 5.0 155 25 -90 5.11 0.6355 WVFGRD96 6.0 155 30 -85 5.12 0.6717 WVFGRD96 7.0 160 30 -80 5.11 0.6652 WVFGRD96 8.0 170 35 -70 5.07 0.6169 WVFGRD96 9.0 185 35 -50 5.05 0.5926 WVFGRD96 10.0 195 45 -30 5.05 0.5738 WVFGRD96 11.0 200 50 -20 5.05 0.5570 WVFGRD96 12.0 200 55 -15 5.06 0.5393 WVFGRD96 13.0 200 55 -15 5.07 0.5190 WVFGRD96 14.0 205 60 10 5.08 0.4966 WVFGRD96 15.0 200 50 -15 5.11 0.4799
The best solution is
WVFGRD96 6.0 155 30 -85 5.12 0.6717
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3 ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Wed Jan 18 09:59:15 CST 2017