2016/11/01 06:43:33 43.0138 13.14 8.2 3.2
SLU Moment Tensor Solution ENS 2016/11/01 06:43:33:2 43.01 13.14 8.2 3.2 Stations used: IV.ARVD IV.ASSB IV.ATFO IV.ATPC IV.ATTE IV.CING IV.GUMA IV.MGAB IV.SACS IV.SNTG IV.SRES IV.T1243 IV.T1245 IV.TERO Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.12 n 3 Best Fitting Double Couple Mo = 6.68e+20 dyne-cm Mw = 3.15 Z = 1 km Plane Strike Dip Rake NP1 146 46 -100 NP2 340 45 -80 Principal Axes: Axis Value Plunge Azimuth T 6.68e+20 0 243 N 0.00e+00 7 153 P -6.68e+20 83 336 Moment Tensor: (dyne-cm) Component Value Mxx 1.30e+20 Mxy 2.74e+20 Mxz -7.71e+19 Myy 5.28e+20 Myz 2.81e+19 Mzz -6.58e+20 -############# ----------############ ##--------------############ ##-----------------########### ####-------------------########### ####---------------------########### #####----------------------########### ######-----------------------########### #######-----------------------########## ########----------- ----------########## ########----------- P ----------########## #########---------- -----------######### ##########-----------------------######### ##########----------------------######## ########---------------------######## T #########--------------------####### ###########------------------###### #############---------------###### ##############------------#### ################--------#### ####################-- ############## Global CMT Convention Moment Tensor: R T P -6.58e+20 -7.71e+19 -2.81e+19 -7.71e+19 1.30e+20 -2.74e+20 -2.81e+19 -2.74e+20 5.28e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20161101064333/index.html |
STK = 340 DIP = 45 RAKE = -80 MW = 3.15 HS = 1.0
The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution ENS 2016/11/01 06:43:33:2 43.01 13.14 8.2 3.2 Stations used: IV.ARVD IV.ASSB IV.ATFO IV.ATPC IV.ATTE IV.CING IV.GUMA IV.MGAB IV.SACS IV.SNTG IV.SRES IV.T1243 IV.T1245 IV.TERO Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.12 n 3 Best Fitting Double Couple Mo = 6.68e+20 dyne-cm Mw = 3.15 Z = 1 km Plane Strike Dip Rake NP1 146 46 -100 NP2 340 45 -80 Principal Axes: Axis Value Plunge Azimuth T 6.68e+20 0 243 N 0.00e+00 7 153 P -6.68e+20 83 336 Moment Tensor: (dyne-cm) Component Value Mxx 1.30e+20 Mxy 2.74e+20 Mxz -7.71e+19 Myy 5.28e+20 Myz 2.81e+19 Mzz -6.58e+20 -############# ----------############ ##--------------############ ##-----------------########### ####-------------------########### ####---------------------########### #####----------------------########### ######-----------------------########### #######-----------------------########## ########----------- ----------########## ########----------- P ----------########## #########---------- -----------######### ##########-----------------------######### ##########----------------------######## ########---------------------######## T #########--------------------####### ###########------------------###### #############---------------###### ##############------------#### ################--------#### ####################-- ############## Global CMT Convention Moment Tensor: R T P -6.58e+20 -7.71e+19 -2.81e+19 -7.71e+19 1.30e+20 -2.74e+20 -2.81e+19 -2.74e+20 5.28e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20161101064333/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.12 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 340 45 -80 3.15 0.6193 WVFGRD96 2.0 340 45 -80 3.21 0.6040 WVFGRD96 3.0 195 55 -25 3.14 0.4413 WVFGRD96 4.0 205 65 15 3.15 0.4286 WVFGRD96 5.0 205 55 10 3.21 0.4150 WVFGRD96 6.0 205 60 20 3.23 0.4079 WVFGRD96 7.0 190 75 -40 3.21 0.4002 WVFGRD96 8.0 185 65 -40 3.22 0.3996 WVFGRD96 9.0 185 65 -40 3.23 0.3981 WVFGRD96 10.0 180 60 -45 3.25 0.3938 WVFGRD96 11.0 180 60 -45 3.27 0.3885 WVFGRD96 12.0 320 40 80 3.29 0.3821 WVFGRD96 13.0 320 40 75 3.31 0.3900 WVFGRD96 14.0 320 40 75 3.33 0.3910 WVFGRD96 15.0 320 40 75 3.36 0.3925
The best solution is
WVFGRD96 1.0 340 45 -80 3.15 0.6193
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.12 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3 ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Tue Nov 1 14:07:28 CDT 2016