2016/10/26 17:10:36 42.8790 13.1290 9.3 5.40
SLU Moment Tensor Solution ENS 2016/10/26 17:10:36:2 42.88 13.13 9.3 5.4 Stations used: IV.ARVD IV.ATFO IV.ATPC IV.ATTE IV.ATVO IV.CAFI IV.CAMP IV.CERT IV.CESX IV.CING IV.FAGN IV.FIAM IV.GIGS IV.INTR IV.LATE IV.MCIV IV.MGAB IV.MTCE IV.PIEI IV.PTQR IV.SACS IV.SRES IV.T1243 IV.T1247 Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.12e+24 dyne-cm Mw = 5.30 Z = 5 km Plane Strike Dip Rake NP1 334 60 -93 NP2 160 30 -85 Principal Axes: Axis Value Plunge Azimuth T 1.12e+24 15 66 N 0.00e+00 2 336 P -1.12e+24 75 236 Moment Tensor: (dyne-cm) Component Value Mxx 1.45e+23 Mxy 3.49e+23 Mxz 2.71e+23 Myy 8.23e+23 Myz 4.96e+23 Mzz -9.68e+23 ############## ##---################# ###--------################# ###-----------################ ####--------------################ ####-----------------############### ####-------------------########### # #####--------------------########## T ## #####---------------------######### ## ######----------------------############## ######-----------------------############# ######---------- -----------############ #######--------- P -----------############ ######--------- ------------########## #######-----------------------########## #######----------------------######### #######---------------------######## #######--------------------####### #######------------------##### ########----------------#### ########------------## ###########--- Global CMT Convention Moment Tensor: R T P -9.68e+23 2.71e+23 -4.96e+23 2.71e+23 1.45e+23 -3.49e+23 -4.96e+23 -3.49e+23 8.23e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20161026171036/index.html |
STK = 160 DIP = 30 RAKE = -85 MW = 5.30 HS = 5.0
The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution ENS 2016/10/26 17:10:36:2 42.88 13.13 9.3 5.4 Stations used: IV.ARVD IV.ATFO IV.ATPC IV.ATTE IV.ATVO IV.CAFI IV.CAMP IV.CERT IV.CESX IV.CING IV.FAGN IV.FIAM IV.GIGS IV.INTR IV.LATE IV.MCIV IV.MGAB IV.MTCE IV.PIEI IV.PTQR IV.SACS IV.SRES IV.T1243 IV.T1247 Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.12e+24 dyne-cm Mw = 5.30 Z = 5 km Plane Strike Dip Rake NP1 334 60 -93 NP2 160 30 -85 Principal Axes: Axis Value Plunge Azimuth T 1.12e+24 15 66 N 0.00e+00 2 336 P -1.12e+24 75 236 Moment Tensor: (dyne-cm) Component Value Mxx 1.45e+23 Mxy 3.49e+23 Mxz 2.71e+23 Myy 8.23e+23 Myz 4.96e+23 Mzz -9.68e+23 ############## ##---################# ###--------################# ###-----------################ ####--------------################ ####-----------------############### ####-------------------########### # #####--------------------########## T ## #####---------------------######### ## ######----------------------############## ######-----------------------############# ######---------- -----------############ #######--------- P -----------############ ######--------- ------------########## #######-----------------------########## #######----------------------######### #######---------------------######## #######--------------------####### #######------------------##### ########----------------#### ########------------## ###########--- Global CMT Convention Moment Tensor: R T P -9.68e+23 2.71e+23 -4.96e+23 2.71e+23 1.45e+23 -3.49e+23 -4.96e+23 -3.49e+23 8.23e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20161026171036/index.html |
October 26, 2016, CENTRAL ITALY, MW=5.5 Howard Koss CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C201610261710A DATA: II IU CU G IC DK GE LD KP MN L.P.BODY WAVES:103S, 164C, T= 40 SURFACE WAVES: 156S, 297C, T= 50 TIMESTAMP: Q-20161026204105 CENTROID LOCATION: ORIGIN TIME: 17:10:40.5 0.1 LAT:42.82N 0.01;LON: 13.12E 0.01 DEP: 12.0 FIX;TRIANG HDUR: 1.4 MOMENT TENSOR: SCALE 10**24 D-CM RR=-2.250 0.026; TT= 0.162 0.026 PP= 2.090 0.022; RT=-0.240 0.089 RP=-0.895 0.073; TP=-0.728 0.023 PRINCIPAL AXES: 1.(T) VAL= 2.463;PLG=10;AZM= 73 2.(N) 0.022; 11; 165 3.(P) -2.483; 75; 305 BEST DBLE.COUPLE:M0= 2.47*10**24 NP1: STRIKE=150;DIP=37;SLIP=-109 NP2: STRIKE=353;DIP=55;SLIP= -76 -----###### #----------######## ##------------######### ###--------------########## ###----------------########## ####-----------------####### ####------------------###### T #####-------- -------###### # #####-------- P -------########## ######------- --------######### ######------------------######### ######----------------######### #######---------------######### ########-------------######## ########-----------######## #########--------###### ###########---##### ########--- |
W-phase Moment Tensor (Mww) Moment 2.430e+17 N-m Magnitude 5.5 Mww Depth 11.5 km Percent DC 97 % Half Duration 3 s Catalog US Data Source US1 Contributor US1 Nodal Planes Plane Strike Dip Rake NP1 160 38 -89 NP2 339 52 -90 Principal Axes Axis Value Plunge Azimuth T 2.410e+17 N-m 7 70 N 0.038e+17 N-m 0 340 P -2.448e+17 N-m 83 247 |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 0 50 -60 5.06 0.4889 WVFGRD96 2.0 165 25 -80 5.18 0.5303 WVFGRD96 3.0 335 60 -95 5.20 0.5914 WVFGRD96 4.0 160 30 -85 5.21 0.6113 WVFGRD96 5.0 160 30 -85 5.30 0.6813 WVFGRD96 6.0 160 35 -90 5.29 0.6259 WVFGRD96 7.0 30 65 25 5.19 0.5816 WVFGRD96 8.0 30 65 20 5.19 0.5824 WVFGRD96 9.0 30 65 20 5.20 0.5691 WVFGRD96 10.0 30 65 20 5.20 0.5530 WVFGRD96 11.0 30 65 15 5.21 0.5371 WVFGRD96 12.0 30 65 15 5.22 0.5215 WVFGRD96 13.0 30 65 15 5.23 0.5066 WVFGRD96 14.0 30 65 15 5.24 0.4949 WVFGRD96 15.0 30 65 15 5.25 0.4740
The best solution is
WVFGRD96 5.0 160 30 -85 5.30 0.6813
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3 ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Wed Oct 26 20:49:11 CDT 2016