2016/10/04 12:41:35 42.8558 13.1177 9.1 3.4 Macerata
USGS Felt map for this earthquake
SLU Moment Tensor Solution ENS 2016/10/04 12:41:35:3 42.86 13.12 9.1 3.4 Macerata Stations used: IV.AOI IV.ARCI IV.ARVD IV.ASQU IV.ATFO IV.ATPC IV.ATTE IV.ATVO IV.CAFI IV.CASP IV.CERA IV.CERT IV.CING IV.CRE IV.CSNT IV.FIAM IV.FSSB IV.GIUL IV.GUAR IV.GUMA IV.LNSS IV.LPEL IV.MGAB IV.MODR IV.MTCE IV.MURB IV.OFFI IV.OSSC IV.PESA IV.PIEI IV.PIGN IV.POFI IV.PTQR IV.RMP IV.RNI2 IV.SACS IV.SAMA IV.SNTG IV.SSFR IV.TERO IV.VAGA MN.AQU Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.88e+21 dyne-cm Mw = 3.45 Z = 5 km Plane Strike Dip Rake NP1 107 54 -127 NP2 340 50 -50 Principal Axes: Axis Value Plunge Azimuth T 1.88e+21 2 223 N 0.00e+00 29 132 P -1.88e+21 60 317 Moment Tensor: (dyne-cm) Component Value Mxx 7.62e+20 Mxy 1.17e+21 Mxz -6.46e+20 Myy 6.59e+20 Myz 5.02e+20 Mzz -1.42e+21 ############## ---------############# ---------------############# ------------------############ ----------------------############ ------------------------############ --------------------------############ -------------- -----------############ #------------- P ------------########### ###------------ -------------########### ####---------------------------########### ######--------------------------########## #######-------------------------########## #########----------------------######### ############-------------------########- ###############---------------#####--- #############################------- ############################------ ######################----- T #####################----- ###################--- ############## Global CMT Convention Moment Tensor: R T P -1.42e+21 -6.46e+20 -5.02e+20 -6.46e+20 7.62e+20 -1.17e+21 -5.02e+20 -1.17e+21 6.59e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20161004124135/index.html |
STK = 340 DIP = 50 RAKE = -50 MW = 3.45 HS = 5.0
The NDK file is 20161004124135.ndk The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution ENS 2016/10/04 12:41:35:3 42.86 13.12 9.1 3.4 Macerata Stations used: IV.AOI IV.ARCI IV.ARVD IV.ASQU IV.ATFO IV.ATPC IV.ATTE IV.ATVO IV.CAFI IV.CASP IV.CERA IV.CERT IV.CING IV.CRE IV.CSNT IV.FIAM IV.FSSB IV.GIUL IV.GUAR IV.GUMA IV.LNSS IV.LPEL IV.MGAB IV.MODR IV.MTCE IV.MURB IV.OFFI IV.OSSC IV.PESA IV.PIEI IV.PIGN IV.POFI IV.PTQR IV.RMP IV.RNI2 IV.SACS IV.SAMA IV.SNTG IV.SSFR IV.TERO IV.VAGA MN.AQU Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.88e+21 dyne-cm Mw = 3.45 Z = 5 km Plane Strike Dip Rake NP1 107 54 -127 NP2 340 50 -50 Principal Axes: Axis Value Plunge Azimuth T 1.88e+21 2 223 N 0.00e+00 29 132 P -1.88e+21 60 317 Moment Tensor: (dyne-cm) Component Value Mxx 7.62e+20 Mxy 1.17e+21 Mxz -6.46e+20 Myy 6.59e+20 Myz 5.02e+20 Mzz -1.42e+21 ############## ---------############# ---------------############# ------------------############ ----------------------############ ------------------------############ --------------------------############ -------------- -----------############ #------------- P ------------########### ###------------ -------------########### ####---------------------------########### ######--------------------------########## #######-------------------------########## #########----------------------######### ############-------------------########- ###############---------------#####--- #############################------- ############################------ ######################----- T #####################----- ###################--- ############## Global CMT Convention Moment Tensor: R T P -1.42e+21 -6.46e+20 -5.02e+20 -6.46e+20 7.62e+20 -1.17e+21 -5.02e+20 -1.17e+21 6.59e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20161004124135/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 340 45 -45 3.27 0.4415 WVFGRD96 2.0 340 45 -45 3.33 0.5040 WVFGRD96 3.0 340 50 -50 3.36 0.5481 WVFGRD96 4.0 345 55 -40 3.36 0.5598 WVFGRD96 5.0 340 50 -50 3.45 0.5852 WVFGRD96 6.0 345 55 -40 3.43 0.5703 WVFGRD96 7.0 350 65 -35 3.43 0.5597 WVFGRD96 8.0 355 75 -25 3.41 0.5501 WVFGRD96 9.0 355 75 -25 3.43 0.5419 WVFGRD96 10.0 -5 75 -25 3.44 0.5311 WVFGRD96 11.0 -5 75 -20 3.45 0.5177 WVFGRD96 12.0 -5 75 -25 3.46 0.5029 WVFGRD96 13.0 0 80 -25 3.48 0.4867 WVFGRD96 14.0 -5 75 -25 3.49 0.4704 WVFGRD96 15.0 -5 75 -30 3.51 0.4550 WVFGRD96 16.0 -5 75 -30 3.52 0.4402 WVFGRD96 17.0 -5 75 -30 3.53 0.4250 WVFGRD96 18.0 -5 75 -25 3.53 0.4101 WVFGRD96 19.0 355 75 -25 3.53 0.3957 WVFGRD96 20.0 355 75 -25 3.54 0.3832 WVFGRD96 21.0 350 70 -30 3.55 0.3718 WVFGRD96 22.0 350 70 -25 3.55 0.3612 WVFGRD96 23.0 350 65 -25 3.55 0.3521 WVFGRD96 24.0 0 75 -10 3.55 0.3448 WVFGRD96 25.0 270 75 -15 3.54 0.3412 WVFGRD96 26.0 270 75 -15 3.56 0.3452 WVFGRD96 27.0 270 75 -15 3.57 0.3484 WVFGRD96 28.0 270 75 -15 3.59 0.3513 WVFGRD96 29.0 270 75 -15 3.61 0.3555
The best solution is
WVFGRD96 5.0 340 50 -50 3.45 0.5852
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3 ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Thu Oct 6 06:42:23 CDT 2016