2016/09/20 03:30:02 42.8055 13.1553 10.1 3.1
SLU Moment Tensor Solution ENS 2016/09/20 03:30:19:5 42.81 13.16 10.1 3.1 Stations used: IV.CAMP IV.FDMO IV.GUMA IV.SNTG IV.T1241 MN.AQU Filtering commands used: cut o DIST/3.3 -5 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.15 n 3 Best Fitting Double Couple Mo = 3.02e+20 dyne-cm Mw = 2.92 Z = 6 km Plane Strike Dip Rake NP1 130 90 70 NP2 40 20 180 Principal Axes: Axis Value Plunge Azimuth T 3.02e+20 42 21 N 0.00e+00 20 130 P -3.02e+20 42 239 Moment Tensor: (dyne-cm) Component Value Mxx 1.02e+20 Mxy -1.79e+19 Mxz 2.17e+20 Myy -1.02e+20 Myz 1.82e+20 Mzz -2.48e+13 ############## ###################### ###########################- ################## ######### ---################# T ##########- ------############### ###########- ---------###########################-- ------------##########################-- --------------########################-- ------------------#####################--- --------------------###################--- ----------------------#################--- ------------------------##############---- -------- ---------------###########--- -------- P -----------------########---- ------- -------------------#####---- ------------------------------#----- -----------------------------##--- -------------------------##### ---------------------####### #-------------######## ############## Global CMT Convention Moment Tensor: R T P -2.48e+13 2.17e+20 -1.82e+20 2.17e+20 1.02e+20 1.79e+19 -1.82e+20 1.79e+19 -1.02e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20160920033019/index.html |
STK = 130 DIP = 90 RAKE = 70 MW = 2.92 HS = 6.0
The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution ENS 2016/09/20 03:30:02:5 42.81 13.16 10.1 3.1 Stations used: IV.CAMP IV.CESX IV.FDMO IV.GUMA IV.SNTG IV.T1241 MN.AQU Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.15 n 3 Best Fitting Double Couple Mo = 3.02e+20 dyne-cm Mw = 2.92 Z = 6 km Plane Strike Dip Rake NP1 300 75 -65 NP2 59 29 -148 Principal Axes: Axis Value Plunge Azimuth T 3.02e+20 26 11 N 0.00e+00 24 113 P -3.02e+20 53 240 Moment Tensor: (dyne-cm) Component Value Mxx 2.09e+20 Mxy -2.38e+18 Mxz 1.89e+20 Myy -7.26e+19 Myz 1.47e+20 Mzz -1.37e+20 ############## ############ ####### ############### T ########## ################ ########### ################################## --################################## ----------###########################- ----------------######################-- --------------------##################-- ------------------------###############--- ---------------------------############--- -----------------------------#########---- ----------- ------------------######---- ---------- P --------------------###---- ---------- --------------------------- --------------------------------####-- -----------------------------####### #-------------------------######## ##-------------------######### ######--------############## ###################### ############## Global CMT Convention Moment Tensor: R T P -1.37e+20 1.89e+20 -1.47e+20 1.89e+20 2.09e+20 2.38e+18 -1.47e+20 2.38e+18 -7.26e+19 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20160920033002/index.html SLU Moment Tensor Solution ENS 2016/09/20 03:30:19:5 42.81 13.16 10.1 3.1 Stations used: IV.CAMP IV.FDMO IV.GUMA IV.SNTG IV.T1241 MN.AQU Filtering commands used: cut o DIST/3.3 -5 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.15 n 3 Best Fitting Double Couple Mo = 3.02e+20 dyne-cm Mw = 2.92 Z = 6 km Plane Strike Dip Rake NP1 130 90 70 NP2 40 20 180 Principal Axes: Axis Value Plunge Azimuth T 3.02e+20 42 21 N 0.00e+00 20 130 P -3.02e+20 42 239 Moment Tensor: (dyne-cm) Component Value Mxx 1.02e+20 Mxy -1.79e+19 Mxz 2.17e+20 Myy -1.02e+20 Myz 1.82e+20 Mzz -2.48e+13 ############## ###################### ###########################- ################## ######### ---################# T ##########- ------############### ###########- ---------###########################-- ------------##########################-- --------------########################-- ------------------#####################--- --------------------###################--- ----------------------#################--- ------------------------##############---- -------- ---------------###########--- -------- P -----------------########---- ------- -------------------#####---- ------------------------------#----- -----------------------------##--- -------------------------##### ---------------------####### #-------------######## ############## Global CMT Convention Moment Tensor: R T P -2.48e+13 2.17e+20 -1.82e+20 2.17e+20 1.02e+20 1.79e+19 -1.82e+20 1.79e+19 -1.02e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20160920033019/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -5 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.15 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 105 60 -80 2.65 0.3705 WVFGRD96 2.0 220 15 10 2.76 0.4228 WVFGRD96 3.0 125 85 75 2.77 0.5243 WVFGRD96 4.0 305 90 -70 2.77 0.5772 WVFGRD96 5.0 130 90 70 2.90 0.6126 WVFGRD96 6.0 130 90 70 2.92 0.6237 WVFGRD96 7.0 130 90 65 2.95 0.6099 WVFGRD96 8.0 310 85 -60 2.92 0.5797 WVFGRD96 9.0 130 90 60 2.94 0.5475 WVFGRD96 10.0 310 90 -60 2.95 0.5151 WVFGRD96 11.0 135 80 65 2.98 0.4887 WVFGRD96 12.0 135 80 70 2.99 0.4608 WVFGRD96 13.0 135 85 70 2.99 0.4362 WVFGRD96 14.0 130 90 70 2.98 0.4162 WVFGRD96 15.0 130 90 70 3.03 0.4013
The best solution is
WVFGRD96 6.0 130 90 70 2.92 0.6237
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -5 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.15 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3 ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Wed Sep 21 09:04:05 CDT 2016