2016/09/05 21:36:11 42.652 13.340 10.4 3.5
SLU Moment Tensor Solution ENS 2016/09/05 21:36:11:2 42.65 13.34 10.4 3.5 Stations used: IV.ARVD IV.CAMP IV.CERT IV.CESX IV.CING IV.FDMO IV.FIAM IV.GIGS IV.GUAR IV.GUMA IV.LATE IV.MA9 IV.MGAB IV.MTCE IV.NARO IV.PIEI IV.PIGN IV.PTQR IV.RDP IV.RMP IV.SACS IV.SNTG IV.SRES IV.SSFR IV.TRTR MN.AQU Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.57e+21 dyne-cm Mw = 3.54 Z = 6 km Plane Strike Dip Rake NP1 140 55 -80 NP2 303 36 -104 Principal Axes: Axis Value Plunge Azimuth T 2.57e+21 9 223 N 0.00e+00 8 314 P -2.57e+21 77 84 Moment Tensor: (dyne-cm) Component Value Mxx 1.34e+21 Mxy 1.23e+21 Mxz -3.60e+20 Myy 1.04e+21 Myz -8.28e+20 Mzz -2.38e+21 ############## ###################### -########################### -#---------------############# -##--------------------########### ####-----------------------######### #####-------------------------######## #######--------------------------####### #######---------------------------###### #########-------------- ----------###### ##########------------- P -----------##### ###########------------ ------------#### ############--------------------------#### ############--------------------------## ##############------------------------## ###############----------------------# ################-------------------- ### ###########----------------- # T ###############----------- ####################----- ###################### ############## Global CMT Convention Moment Tensor: R T P -2.38e+21 -3.60e+20 8.28e+20 -3.60e+20 1.34e+21 -1.23e+21 8.28e+20 -1.23e+21 1.04e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20160905213611/index.html |
STK = 140 DIP = 55 RAKE = -80 MW = 3.54 HS = 6.0
The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution ENS 2016/09/05 21:36:11:2 42.65 13.34 10.4 3.5 Stations used: IV.ARVD IV.CAMP IV.CERT IV.CESX IV.CING IV.FDMO IV.FIAM IV.GIGS IV.GUAR IV.GUMA IV.LATE IV.MA9 IV.MGAB IV.MTCE IV.NARO IV.PIEI IV.PIGN IV.PTQR IV.RDP IV.RMP IV.SACS IV.SNTG IV.SRES IV.SSFR IV.TRTR MN.AQU Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.57e+21 dyne-cm Mw = 3.54 Z = 6 km Plane Strike Dip Rake NP1 140 55 -80 NP2 303 36 -104 Principal Axes: Axis Value Plunge Azimuth T 2.57e+21 9 223 N 0.00e+00 8 314 P -2.57e+21 77 84 Moment Tensor: (dyne-cm) Component Value Mxx 1.34e+21 Mxy 1.23e+21 Mxz -3.60e+20 Myy 1.04e+21 Myz -8.28e+20 Mzz -2.38e+21 ############## ###################### -########################### -#---------------############# -##--------------------########### ####-----------------------######### #####-------------------------######## #######--------------------------####### #######---------------------------###### #########-------------- ----------###### ##########------------- P -----------##### ###########------------ ------------#### ############--------------------------#### ############--------------------------## ##############------------------------## ###############----------------------# ################-------------------- ### ###########----------------- # T ###############----------- ####################----- ###################### ############## Global CMT Convention Moment Tensor: R T P -2.38e+21 -3.60e+20 8.28e+20 -3.60e+20 1.34e+21 -1.23e+21 8.28e+20 -1.23e+21 1.04e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20160905213611/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 350 50 -35 3.24 0.3484 WVFGRD96 2.0 345 40 -35 3.32 0.3715 WVFGRD96 3.0 140 65 -85 3.41 0.4206 WVFGRD96 4.0 140 55 -85 3.45 0.4752 WVFGRD96 5.0 140 60 -80 3.53 0.5214 WVFGRD96 6.0 140 55 -80 3.54 0.5464 WVFGRD96 7.0 145 55 -75 3.52 0.5290 WVFGRD96 8.0 160 65 -50 3.47 0.4824 WVFGRD96 9.0 165 70 -45 3.47 0.4625 WVFGRD96 10.0 170 75 -35 3.48 0.4468 WVFGRD96 11.0 170 75 -35 3.48 0.4293 WVFGRD96 12.0 170 80 -35 3.49 0.4106 WVFGRD96 13.0 0 80 25 3.49 0.3963 WVFGRD96 14.0 0 75 25 3.50 0.3836 WVFGRD96 15.0 0 75 30 3.52 0.3680
The best solution is
WVFGRD96 6.0 140 55 -80 3.54 0.5464
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3 ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Thu Sep 8 07:33:37 CDT 2016