2016/08/24 14:02:20 42.80 13.25 8.0 3.9 Ascoli Piceno
USGS Felt map for this earthquake
SLU Moment Tensor Solution ENS 2016/08/24 14:02:20:0 42.80 13.25 8.0 3.9 Ascoli Piceno Stations used: IV.ARVD IV.ASQU IV.ASSB IV.ATFO IV.ATPC IV.ATTE IV.ATVO IV.CAFI IV.CERA IV.CESX IV.CRE IV.CSNT IV.FDMO IV.FIAM IV.FSSB IV.GUAR IV.GUMA IV.LNSS IV.LPEL IV.MA9 IV.MGAB IV.MODR IV.MTCE IV.MTRZ IV.MURB IV.NRCA IV.OFFI IV.OSSC IV.PARC IV.PESA IV.PIEI IV.PIGN IV.POFI IV.PTQR IV.RMP IV.RNI2 IV.SACS IV.SNTG IV.SSFR IV.TERO IV.TOLF IV.VAGA MN.AQU Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 5.69e+21 dyne-cm Mw = 3.77 Z = 3 km Plane Strike Dip Rake NP1 220 65 -40 NP2 330 54 -149 Principal Axes: Axis Value Plunge Azimuth T 5.69e+21 6 277 N 0.00e+00 44 13 P -5.69e+21 45 180 Moment Tensor: (dyne-cm) Component Value Mxx -2.73e+21 Mxy -6.93e+20 Mxz 2.92e+21 Myy 5.53e+21 Myz -6.17e+20 Mzz -2.80e+21 -------------- ###------------------- ###########---------------## ##############--------######## ###################--############# ###################---############## ##################------############## #################----------############# ##############------------############ T ############---------------############ ###########-----------------########### ############-------------------########### ###########---------------------########## #########----------------------######### #########-----------------------######## #######------------------------####### #####----------- -----------###### ####----------- P -----------##### ##----------- -----------### #------------------------### ---------------------- -------------- Global CMT Convention Moment Tensor: R T P -2.80e+21 2.92e+21 6.17e+20 2.92e+21 -2.73e+21 6.93e+20 6.17e+20 6.93e+20 5.53e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20160824140220/index.html |
STK = 220 DIP = 65 RAKE = -40 MW = 3.77 HS = 3.0
The NDK file is 20160824140220.ndk The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution ENS 2016/08/24 14:02:20:0 42.80 13.25 8.0 3.9 Ascoli Piceno Stations used: IV.ARVD IV.ASQU IV.ASSB IV.ATFO IV.ATPC IV.ATTE IV.ATVO IV.CAFI IV.CERA IV.CESX IV.CRE IV.CSNT IV.FDMO IV.FIAM IV.FSSB IV.GUAR IV.GUMA IV.LNSS IV.LPEL IV.MA9 IV.MGAB IV.MODR IV.MTCE IV.MTRZ IV.MURB IV.NRCA IV.OFFI IV.OSSC IV.PARC IV.PESA IV.PIEI IV.PIGN IV.POFI IV.PTQR IV.RMP IV.RNI2 IV.SACS IV.SNTG IV.SSFR IV.TERO IV.TOLF IV.VAGA MN.AQU Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 5.69e+21 dyne-cm Mw = 3.77 Z = 3 km Plane Strike Dip Rake NP1 220 65 -40 NP2 330 54 -149 Principal Axes: Axis Value Plunge Azimuth T 5.69e+21 6 277 N 0.00e+00 44 13 P -5.69e+21 45 180 Moment Tensor: (dyne-cm) Component Value Mxx -2.73e+21 Mxy -6.93e+20 Mxz 2.92e+21 Myy 5.53e+21 Myz -6.17e+20 Mzz -2.80e+21 -------------- ###------------------- ###########---------------## ##############--------######## ###################--############# ###################---############## ##################------############## #################----------############# ##############------------############ T ############---------------############ ###########-----------------########### ############-------------------########### ###########---------------------########## #########----------------------######### #########-----------------------######## #######------------------------####### #####----------- -----------###### ####----------- P -----------##### ##----------- -----------### #------------------------### ---------------------- -------------- Global CMT Convention Moment Tensor: R T P -2.80e+21 2.92e+21 6.17e+20 2.92e+21 -2.73e+21 6.93e+20 6.17e+20 6.93e+20 5.53e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20160824140220/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 220 70 -40 3.68 0.5503 WVFGRD96 2.0 220 70 -45 3.75 0.5957 WVFGRD96 3.0 220 65 -40 3.77 0.6158 WVFGRD96 4.0 220 60 -35 3.79 0.6138 WVFGRD96 5.0 215 55 -45 3.87 0.6113 WVFGRD96 6.0 220 55 -30 3.86 0.5865 WVFGRD96 7.0 225 65 -25 3.84 0.5627 WVFGRD96 8.0 225 65 -15 3.84 0.5382 WVFGRD96 9.0 55 70 20 3.84 0.5160 WVFGRD96 10.0 55 70 20 3.85 0.4963 WVFGRD96 11.0 55 70 15 3.86 0.4757 WVFGRD96 12.0 55 70 15 3.87 0.4550 WVFGRD96 13.0 55 70 15 3.88 0.4343 WVFGRD96 14.0 55 70 15 3.89 0.4137 WVFGRD96 15.0 55 65 15 3.90 0.3922 WVFGRD96 16.0 55 65 15 3.91 0.3734 WVFGRD96 17.0 55 65 15 3.91 0.3568 WVFGRD96 18.0 55 70 20 3.91 0.3416 WVFGRD96 19.0 55 70 20 3.92 0.3290 WVFGRD96 20.0 55 75 20 3.92 0.3193 WVFGRD96 21.0 50 80 20 3.92 0.3116 WVFGRD96 22.0 315 70 -20 3.94 0.3100 WVFGRD96 23.0 315 70 -15 3.95 0.3153 WVFGRD96 24.0 320 70 -15 3.96 0.3203 WVFGRD96 25.0 320 75 5 3.97 0.3255 WVFGRD96 26.0 320 75 5 3.99 0.3303 WVFGRD96 27.0 320 75 5 4.01 0.3333 WVFGRD96 28.0 320 75 5 4.02 0.3369 WVFGRD96 29.0 320 75 5 4.04 0.3389
The best solution is
WVFGRD96 3.0 220 65 -40 3.77 0.6158
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3 ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Wed Aug 24 13:51:43 CDT 2016