2016/05/30 20:24:20 42.71 11.97 15.0 4.1 Italy
USGS Felt map for this earthquake
SLU Moment Tensor Solution ENS 2016/05/30 20:24:20:0 42.71 11.97 15.0 4.1 Italy Stations used: IV.AOI IV.ARCI IV.ARVD IV.ASQU IV.ASSB IV.ATFO IV.ATPC IV.ATTE IV.ATVO IV.CASP IV.CELB IV.CERA IV.CERT IV.CESX IV.CING IV.CRE IV.FDMO IV.FIAM IV.GIUL IV.GUAR IV.LAV9 IV.LPEL IV.MGAB IV.MIDA IV.MODR IV.MTCE IV.MTRZ IV.MURB IV.NRCA IV.OFFI IV.OSSC IV.PARC IV.PESA IV.PIEI IV.PIGN IV.POFI IV.PTQR IV.RMP IV.SAMA IV.SNTG IV.TERO IV.TOLF IV.VAGA IV.ZCCA MN.AQU MN.VLC Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 2.04e+22 dyne-cm Mw = 4.14 Z = 5 km Plane Strike Dip Rake NP1 110 53 -106 NP2 315 40 -70 Principal Axes: Axis Value Plunge Azimuth T 2.04e+22 7 211 N 0.00e+00 13 119 P -2.04e+22 76 328 Moment Tensor: (dyne-cm) Component Value Mxx 1.39e+22 Mxy 9.45e+21 Mxz -6.14e+21 Myy 4.96e+21 Myz 1.43e+21 Mzz -1.89e+22 ############## ###################### ###-------################## -----------------############# ----------------------############ -------------------------########### ----------------------------########## #------------------------------######### #---------------- ------------######## ###--------------- P -------------######## ####-------------- --------------####### ######------------------------------###### ########----------------------------###### #########---------------------------#### ############------------------------#### ###############--------------------#-- ####################----------####-- #################################- ############################## ### ###################### T ################### ############## Global CMT Convention Moment Tensor: R T P -1.89e+22 -6.14e+21 -1.43e+21 -6.14e+21 1.39e+22 -9.45e+21 -1.43e+21 -9.45e+21 4.96e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20160530202420/index.html |
STK = 315 DIP = 40 RAKE = -70 MW = 4.14 HS = 5.0
The NDK file is 20160530202420.ndk The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution ENS 2016/05/30 20:24:20:0 42.71 11.97 15.0 4.1 Italy Stations used: IV.AOI IV.ARCI IV.ARVD IV.ASQU IV.ASSB IV.ATFO IV.ATPC IV.ATTE IV.ATVO IV.CASP IV.CELB IV.CERA IV.CERT IV.CESX IV.CING IV.CRE IV.FDMO IV.FIAM IV.GIUL IV.GUAR IV.LAV9 IV.LPEL IV.MGAB IV.MIDA IV.MODR IV.MTCE IV.MTRZ IV.MURB IV.NRCA IV.OFFI IV.OSSC IV.PARC IV.PESA IV.PIEI IV.PIGN IV.POFI IV.PTQR IV.RMP IV.SAMA IV.SNTG IV.TERO IV.TOLF IV.VAGA IV.ZCCA MN.AQU MN.VLC Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 2.04e+22 dyne-cm Mw = 4.14 Z = 5 km Plane Strike Dip Rake NP1 110 53 -106 NP2 315 40 -70 Principal Axes: Axis Value Plunge Azimuth T 2.04e+22 7 211 N 0.00e+00 13 119 P -2.04e+22 76 328 Moment Tensor: (dyne-cm) Component Value Mxx 1.39e+22 Mxy 9.45e+21 Mxz -6.14e+21 Myy 4.96e+21 Myz 1.43e+21 Mzz -1.89e+22 ############## ###################### ###-------################## -----------------############# ----------------------############ -------------------------########### ----------------------------########## #------------------------------######### #---------------- ------------######## ###--------------- P -------------######## ####-------------- --------------####### ######------------------------------###### ########----------------------------###### #########---------------------------#### ############------------------------#### ###############--------------------#-- ####################----------####-- #################################- ############################## ### ###################### T ################### ############## Global CMT Convention Moment Tensor: R T P -1.89e+22 -6.14e+21 -1.43e+21 -6.14e+21 1.39e+22 -9.45e+21 -1.43e+21 -9.45e+21 4.96e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20160530202420/index.html |
|
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.08 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 330 35 -40 3.94 0.4384 WVFGRD96 2.0 325 35 -50 4.01 0.5110 WVFGRD96 3.0 325 40 -55 4.04 0.5624 WVFGRD96 4.0 315 40 -70 4.09 0.5719 WVFGRD96 5.0 315 40 -70 4.14 0.5965 WVFGRD96 6.0 330 45 -45 4.09 0.5332 WVFGRD96 7.0 350 65 15 4.04 0.5055 WVFGRD96 8.0 350 65 15 4.03 0.5062 WVFGRD96 9.0 350 70 15 4.04 0.5027 WVFGRD96 10.0 350 70 15 4.05 0.4961 WVFGRD96 11.0 350 70 15 4.06 0.4866 WVFGRD96 12.0 350 70 15 4.07 0.4761 WVFGRD96 13.0 350 70 15 4.07 0.4643 WVFGRD96 14.0 350 70 15 4.08 0.4506 WVFGRD96 15.0 350 70 15 4.10 0.4340 WVFGRD96 16.0 350 70 15 4.10 0.4192 WVFGRD96 17.0 350 70 15 4.11 0.4043 WVFGRD96 18.0 350 70 15 4.11 0.3897 WVFGRD96 19.0 350 70 15 4.12 0.3761 WVFGRD96 20.0 350 70 15 4.13 0.3633 WVFGRD96 21.0 355 65 20 4.13 0.3514 WVFGRD96 22.0 355 65 20 4.14 0.3402 WVFGRD96 23.0 75 80 20 4.16 0.3331 WVFGRD96 24.0 255 80 5 4.17 0.3362 WVFGRD96 25.0 255 80 0 4.18 0.3382 WVFGRD96 26.0 255 80 0 4.20 0.3395 WVFGRD96 27.0 255 80 -5 4.21 0.3394 WVFGRD96 28.0 255 80 -5 4.23 0.3387 WVFGRD96 29.0 255 80 -5 4.25 0.3367
The best solution is
WVFGRD96 5.0 315 40 -70 4.14 0.5965
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.08 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3 ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Tue May 31 03:15:20 CDT 2016