2015/07/05 05:03:54 43.53 12.28 12.0 3.4 Italy
USGS Felt map for this earthquake
SLU Moment Tensor Solution ENS 2015/07/05 05:03:54:0 43.53 12.28 12.0 3.4 Italy Stations used: GU.CARD GU.MAIM IV.AOI IV.ARCI IV.ARVD IV.ASQU IV.ATFO IV.ATMI IV.ATVO IV.BDI IV.CAFI IV.CAMP IV.CASP IV.CERT IV.CESX IV.CING IV.CRE IV.CRMI IV.FDMO IV.FIAM IV.FIR IV.FNVD IV.FROS IV.FSSB IV.GROG IV.GUMA IV.LMD IV.MA9 IV.MCIV IV.MGAB IV.MOMA IV.MSSA IV.MTCE IV.MTRZ IV.NARO IV.OFFI IV.PARC IV.PESA IV.PLMA IV.POFI IV.PTQR IV.RMP IV.SACS IV.SEI IV.SNTG IV.SSFR IV.TERO IV.TOLF IV.TRIF IV.TRTR MN.AQU MN.VLC Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.29e+21 dyne-cm Mw = 3.34 Z = 11 km Plane Strike Dip Rake NP1 272 71 -159 NP2 175 70 -20 Principal Axes: Axis Value Plunge Azimuth T 1.29e+21 1 43 N 0.00e+00 62 312 P -1.29e+21 28 134 Moment Tensor: (dyne-cm) Component Value Mxx 2.00e+20 Mxy 1.14e+21 Mxz 3.83e+20 Myy 8.35e+19 Myz -3.72e+20 Mzz -2.83e+20 -----######### --------############## ----------################ T -----------################ ------------###################### -------------####################### --------------######################## ---------------######################### -------------##--------################# -----###########------------------######## -###############-----------------------### ################-------------------------- ################-------------------------- ###############------------------------- ################------------------------ ###############------------- ------- ###############------------ P ------ ##############------------ ----- #############----------------- #############--------------- ###########----------- ########------ Global CMT Convention Moment Tensor: R T P -2.83e+20 3.83e+20 3.72e+20 3.83e+20 2.00e+20 -1.14e+21 3.72e+20 -1.14e+21 8.35e+19 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20150705050354/index.html |
STK = 175 DIP = 70 RAKE = -20 MW = 3.34 HS = 11.0
The NDK file is 20150705050354.ndk The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution ENS 2015/07/05 05:03:54:0 43.53 12.28 12.0 3.4 Italy Stations used: GU.CARD GU.MAIM IV.AOI IV.ARCI IV.ARVD IV.ASQU IV.ATFO IV.ATMI IV.ATVO IV.BDI IV.CAFI IV.CAMP IV.CASP IV.CERT IV.CESX IV.CING IV.CRE IV.CRMI IV.FDMO IV.FIAM IV.FIR IV.FNVD IV.FROS IV.FSSB IV.GROG IV.GUMA IV.LMD IV.MA9 IV.MCIV IV.MGAB IV.MOMA IV.MSSA IV.MTCE IV.MTRZ IV.NARO IV.OFFI IV.PARC IV.PESA IV.PLMA IV.POFI IV.PTQR IV.RMP IV.SACS IV.SEI IV.SNTG IV.SSFR IV.TERO IV.TOLF IV.TRIF IV.TRTR MN.AQU MN.VLC Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.29e+21 dyne-cm Mw = 3.34 Z = 11 km Plane Strike Dip Rake NP1 272 71 -159 NP2 175 70 -20 Principal Axes: Axis Value Plunge Azimuth T 1.29e+21 1 43 N 0.00e+00 62 312 P -1.29e+21 28 134 Moment Tensor: (dyne-cm) Component Value Mxx 2.00e+20 Mxy 1.14e+21 Mxz 3.83e+20 Myy 8.35e+19 Myz -3.72e+20 Mzz -2.83e+20 -----######### --------############## ----------################ T -----------################ ------------###################### -------------####################### --------------######################## ---------------######################### -------------##--------################# -----###########------------------######## -###############-----------------------### ################-------------------------- ################-------------------------- ###############------------------------- ################------------------------ ###############------------- ------- ###############------------ P ------ ##############------------ ----- #############----------------- #############--------------- ###########----------- ########------ Global CMT Convention Moment Tensor: R T P -2.83e+20 3.83e+20 3.72e+20 3.83e+20 2.00e+20 -1.14e+21 3.72e+20 -1.14e+21 8.35e+19 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20150705050354/index.html |
|
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 190 60 30 3.03 0.3533 WVFGRD96 2.0 190 55 30 3.11 0.3896 WVFGRD96 3.0 175 50 -15 3.15 0.4180 WVFGRD96 4.0 175 55 -15 3.18 0.4719 WVFGRD96 5.0 170 50 -25 3.26 0.5153 WVFGRD96 6.0 170 60 -35 3.29 0.5627 WVFGRD96 7.0 170 60 -30 3.30 0.6013 WVFGRD96 8.0 175 65 -25 3.29 0.6278 WVFGRD96 9.0 175 65 -20 3.31 0.6422 WVFGRD96 10.0 175 70 -20 3.33 0.6500 WVFGRD96 11.0 175 70 -20 3.34 0.6538 WVFGRD96 12.0 175 70 -20 3.36 0.6531 WVFGRD96 13.0 175 70 -20 3.37 0.6486 WVFGRD96 14.0 175 70 -20 3.38 0.6401 WVFGRD96 15.0 175 65 -20 3.41 0.6283 WVFGRD96 16.0 175 65 -20 3.42 0.6168 WVFGRD96 17.0 175 65 -20 3.43 0.6040 WVFGRD96 18.0 175 65 -20 3.44 0.5906 WVFGRD96 19.0 175 60 -15 3.44 0.5764 WVFGRD96 20.0 175 60 -15 3.45 0.5619 WVFGRD96 21.0 175 60 -15 3.46 0.5469 WVFGRD96 22.0 175 60 -15 3.47 0.5314 WVFGRD96 23.0 175 60 -15 3.48 0.5161 WVFGRD96 24.0 170 55 -15 3.49 0.5012 WVFGRD96 25.0 175 60 -5 3.49 0.4873 WVFGRD96 26.0 175 60 -5 3.50 0.4749 WVFGRD96 27.0 175 60 -5 3.51 0.4629 WVFGRD96 28.0 175 60 0 3.52 0.4525 WVFGRD96 29.0 175 60 -10 3.53 0.4440
The best solution is
WVFGRD96 11.0 175 70 -20 3.34 0.6538
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +70 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3 ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Tue Jul 7 10:48:29 CDT 2015