2013/12/08 14:35:33 42.459 13.462 17.9 3.50 Italy
USGS Felt map for this earthquake
SLU Moment Tensor Solution ENS 2013/12/08 14:35:33:0 42.46 13.46 17.9 3.5 Italy Stations used: IV.ARVD IV.ASQU IV.BSSO IV.CAFI IV.CAFR IV.CASP IV.CERA IV.CERT IV.CESI IV.CESX IV.CING IV.CRE IV.CSNT IV.FDMO IV.FRES IV.FSSB IV.GIUL IV.GUAR IV.GUMA IV.INTR IV.LATE IV.LAV9 IV.LNSS IV.LPEL IV.MA9 IV.MAON IV.MGAB IV.MIDA IV.MODR IV.MSAG IV.MTCE IV.NRCA IV.OFFI IV.OSSC IV.PARC IV.PESA IV.PIGN IV.POFI IV.PSB1 IV.PTQR IV.RNI2 IV.ROM9 IV.SACR IV.SACS IV.SAMA IV.SGRT IV.SNTG IV.SSFR IV.T0104 IV.TERO IV.TOLF IV.VAGA IV.VVLD MN.AQU Filtering commands used: cut a -10 a 100 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.05e+21 dyne-cm Mw = 3.59 Z = 13 km Plane Strike Dip Rake NP1 94 72 -154 NP2 355 65 -20 Principal Axes: Axis Value Plunge Azimuth T 3.05e+21 5 223 N 0.00e+00 58 126 P -3.05e+21 31 316 Moment Tensor: (dyne-cm) Component Value Mxx 4.58e+20 Mxy 2.63e+21 Mxz -1.15e+21 Myy 3.43e+20 Myz 7.75e+20 Mzz -8.00e+20 ------######## ------------########## ----------------############ ------------------############ ----- -------------############# ------ P -------------############## ------- --------------############## -------------------------############### --------------------------############## ---------------------------############### #--------------------------############### ####-----------------------############### #########-------------------###########--- ####################------#------------- ##########################-------------- #########################------------- ########################------------ # ###################----------- T ##################---------- ##################--------- ###############------- ##########---- Global CMT Convention Moment Tensor: R T P -8.00e+20 -1.15e+21 -7.75e+20 -1.15e+21 4.58e+20 -2.63e+21 -7.75e+20 -2.63e+21 3.43e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20131208143533/index.html |
STK = -5 DIP = 65 RAKE = -20 MW = 3.59 HS = 13.0
The NDK file is 20131208143533.ndk The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution ENS 2013/12/08 14:35:33:0 42.46 13.46 17.9 3.5 Italy Stations used: IV.ARVD IV.ASQU IV.BSSO IV.CAFI IV.CAFR IV.CASP IV.CERA IV.CERT IV.CESI IV.CESX IV.CING IV.CRE IV.CSNT IV.FDMO IV.FRES IV.FSSB IV.GIUL IV.GUAR IV.GUMA IV.INTR IV.LATE IV.LAV9 IV.LNSS IV.LPEL IV.MA9 IV.MAON IV.MGAB IV.MIDA IV.MODR IV.MSAG IV.MTCE IV.NRCA IV.OFFI IV.OSSC IV.PARC IV.PESA IV.PIGN IV.POFI IV.PSB1 IV.PTQR IV.RNI2 IV.ROM9 IV.SACR IV.SACS IV.SAMA IV.SGRT IV.SNTG IV.SSFR IV.T0104 IV.TERO IV.TOLF IV.VAGA IV.VVLD MN.AQU Filtering commands used: cut a -10 a 100 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.05e+21 dyne-cm Mw = 3.59 Z = 13 km Plane Strike Dip Rake NP1 94 72 -154 NP2 355 65 -20 Principal Axes: Axis Value Plunge Azimuth T 3.05e+21 5 223 N 0.00e+00 58 126 P -3.05e+21 31 316 Moment Tensor: (dyne-cm) Component Value Mxx 4.58e+20 Mxy 2.63e+21 Mxz -1.15e+21 Myy 3.43e+20 Myz 7.75e+20 Mzz -8.00e+20 ------######## ------------########## ----------------############ ------------------############ ----- -------------############# ------ P -------------############## ------- --------------############## -------------------------############### --------------------------############## ---------------------------############### #--------------------------############### ####-----------------------############### #########-------------------###########--- ####################------#------------- ##########################-------------- #########################------------- ########################------------ # ###################----------- T ##################---------- ##################--------- ###############------- ##########---- Global CMT Convention Moment Tensor: R T P -8.00e+20 -1.15e+21 -7.75e+20 -1.15e+21 4.58e+20 -2.63e+21 -7.75e+20 -2.63e+21 3.43e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20131208143533/index.html |
|
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut a -10 a 100 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 180 90 -5 3.23 0.2947 WVFGRD96 2.0 10 60 25 3.34 0.3230 WVFGRD96 3.0 5 60 15 3.37 0.3402 WVFGRD96 4.0 5 60 10 3.40 0.3639 WVFGRD96 5.0 0 50 -5 3.46 0.3912 WVFGRD96 6.0 -5 55 -20 3.49 0.4158 WVFGRD96 7.0 355 60 -25 3.51 0.4411 WVFGRD96 8.0 355 65 -25 3.52 0.4681 WVFGRD96 9.0 355 65 -25 3.53 0.4871 WVFGRD96 10.0 -5 65 -25 3.55 0.5007 WVFGRD96 11.0 -5 65 -20 3.56 0.5092 WVFGRD96 12.0 -5 65 -20 3.58 0.5136 WVFGRD96 13.0 -5 65 -20 3.59 0.5146 WVFGRD96 14.0 -5 65 -20 3.61 0.5118 WVFGRD96 15.0 -5 65 -20 3.64 0.5095 WVFGRD96 16.0 -5 60 -20 3.64 0.5033 WVFGRD96 17.0 -5 60 -20 3.65 0.4955 WVFGRD96 18.0 0 60 -15 3.67 0.4865 WVFGRD96 19.0 0 60 -15 3.67 0.4766 WVFGRD96 20.0 0 60 -15 3.68 0.4656 WVFGRD96 21.0 0 60 -15 3.69 0.4541 WVFGRD96 22.0 0 55 -15 3.70 0.4425 WVFGRD96 23.0 0 55 -10 3.70 0.4313 WVFGRD96 24.0 0 55 -10 3.71 0.4204 WVFGRD96 25.0 0 55 -10 3.72 0.4097 WVFGRD96 26.0 0 55 -10 3.72 0.3998 WVFGRD96 27.0 0 55 -10 3.73 0.3904 WVFGRD96 28.0 0 60 -10 3.74 0.3822 WVFGRD96 29.0 0 60 -10 3.75 0.3765
The best solution is
WVFGRD96 13.0 -5 65 -20 3.59 0.5146
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut a -10 a 100 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3 ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Sun Dec 8 16:04:14 CST 2013