2012/06/27 01:14:20 37.001 15.034 3.0 3.7 Italy
SLU Moment Tensor Solution ENS 2012/06/27 01:14:20:0 37.00 15.03 3.0 3.7 Italy Stations used: IV.ECNV IV.GALF IV.HAGA IV.HCRL IV.HLNI IV.HMDC IV.RESU IV.SSY Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 4.47e+21 dyne-cm Mw = 3.70 Z = 5 km Plane Strike Dip Rake NP1 5 90 5 NP2 275 85 180 Principal Axes: Axis Value Plunge Azimuth T 4.47e+21 4 230 N 0.00e+00 85 5 P -4.47e+21 4 140 Moment Tensor: (dyne-cm) Component Value Mxx -7.73e+20 Mxy 4.38e+21 Mxz 3.39e+19 Myy 7.73e+20 Myz -3.88e+20 Mzz -3.40e+13 ---------##### -------------######### ---------------############# ----------------############## ------------------################ -------------------################# --------------------################## ---------------------################### --------------------#################### ---------------------##################### #####################----################# #####################-----------------#### #####################--------------------- ####################-------------------- ###################--------------------- ##################-------------------- #################------------------- # ############------------------ T ############------------ - ############------------ P #########------------- #####--------- Global CMT Convention Moment Tensor: R T P -3.40e+13 3.39e+19 3.88e+20 3.39e+19 -7.73e+20 -4.38e+21 3.88e+20 -4.38e+21 7.73e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20120627011420/index.html |
STK = 5 DIP = 90 RAKE = 5 MW = 3.70 HS = 5.0
The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution ENS 2012/06/27 01:14:20:0 37.00 15.03 3.0 3.7 Italy Stations used: IV.ECNV IV.GALF IV.HAGA IV.HCRL IV.HLNI IV.HMDC IV.RESU IV.SSY Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 4.47e+21 dyne-cm Mw = 3.70 Z = 5 km Plane Strike Dip Rake NP1 5 90 5 NP2 275 85 180 Principal Axes: Axis Value Plunge Azimuth T 4.47e+21 4 230 N 0.00e+00 85 5 P -4.47e+21 4 140 Moment Tensor: (dyne-cm) Component Value Mxx -7.73e+20 Mxy 4.38e+21 Mxz 3.39e+19 Myy 7.73e+20 Myz -3.88e+20 Mzz -3.40e+13 ---------##### -------------######### ---------------############# ----------------############## ------------------################ -------------------################# --------------------################## ---------------------################### --------------------#################### ---------------------##################### #####################----################# #####################-----------------#### #####################--------------------- ####################-------------------- ###################--------------------- ##################-------------------- #################------------------- # ############------------------ T ############------------ - ############------------ P #########------------- #####--------- Global CMT Convention Moment Tensor: R T P -3.40e+13 3.39e+19 3.88e+20 3.39e+19 -7.73e+20 -4.38e+21 3.88e+20 -4.38e+21 7.73e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20120627011420/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 5 90 5 3.48 0.3964 WVFGRD96 2.0 5 90 5 3.56 0.4533 WVFGRD96 3.0 5 90 10 3.61 0.4859 WVFGRD96 4.0 185 90 -5 3.66 0.5080 WVFGRD96 5.0 5 90 5 3.70 0.5193 WVFGRD96 6.0 185 90 -5 3.73 0.5185 WVFGRD96 7.0 185 90 -10 3.75 0.5137 WVFGRD96 8.0 5 90 5 3.76 0.5079 WVFGRD96 9.0 5 90 5 3.78 0.5035 WVFGRD96 10.0 5 90 5 3.79 0.4992 WVFGRD96 11.0 5 90 5 3.80 0.4961 WVFGRD96 12.0 185 85 -10 3.81 0.4945 WVFGRD96 13.0 185 85 -10 3.83 0.4922 WVFGRD96 14.0 185 90 -5 3.84 0.4889 WVFGRD96 15.0 185 85 -10 3.85 0.4868 WVFGRD96 16.0 185 85 -10 3.86 0.4865 WVFGRD96 17.0 185 85 -10 3.87 0.4845 WVFGRD96 18.0 185 85 -10 3.88 0.4828 WVFGRD96 19.0 5 90 10 3.89 0.4850 WVFGRD96 20.0 5 90 10 3.90 0.4857 WVFGRD96 21.0 5 90 10 3.91 0.4921 WVFGRD96 22.0 185 90 -15 3.91 0.4928 WVFGRD96 23.0 185 90 -15 3.92 0.4993 WVFGRD96 24.0 185 90 -15 3.93 0.4997 WVFGRD96 25.0 5 90 20 3.93 0.5032 WVFGRD96 26.0 185 90 -20 3.94 0.5017 WVFGRD96 27.0 5 90 20 3.96 0.5001 WVFGRD96 28.0 5 90 20 3.97 0.4966 WVFGRD96 29.0 185 90 -20 3.98 0.4919
The best solution is
WVFGRD96 5.0 5 90 5 3.70 0.5193
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3 ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Wed Jun 27 00:33:04 CDT 2012