2012/05/20 02:03:52 44.890 11.230 6.3 5.9 Italy
USGS Felt map for this earthquake
SLU Moment Tensor Solution ENS 2012/05/20 02:03:52:0 44.89 11.23 6.3 5.9 Italy Stations used: GU.PCP GU.POPM IV.AOI IV.ARVD IV.ATVO IV.BDI IV.CESI IV.CING IV.CRMI IV.FDMO IV.FIR IV.FNVD IV.FROS IV.FSSB IV.FVI IV.GUMA IV.LATE IV.MCIV IV.MONC IV.MSSA IV.MURB IV.PLMA IV.PRMA IV.QLNO IV.ROVR IV.SACS IV.SALO IV.SNTG IV.SSFR IV.STAL IV.TEOL IV.TRIF IV.VARE MN.TUE NI.CGRP NI.SABO NI.VINO Filtering commands used: hp c 0.01 n 3 lp c 0.04 n 3 Best Fitting Double Couple Mo = 1.02e+25 dyne-cm Mw = 5.94 Z = 5 km Plane Strike Dip Rake NP1 278 45 85 NP2 105 45 95 Principal Axes: Axis Value Plunge Azimuth T 1.02e+25 86 103 N 0.00e+00 4 281 P -1.02e+25 0 11 Moment Tensor: (dyne-cm) Component Value Mxx -9.83e+24 Mxy -2.00e+24 Mxz -1.63e+23 Myy -3.68e+23 Myz 6.09e+23 Mzz 1.02e+25 ---------- P - -------------- ----- ---------------------------- ------------------------------ ---------------------------------- --------################------------ -----########################--------- ---##############################------- -###################################---- --####################################---- ---#################### ##############-- ----################### T ###############- -----################## ################ ------################################## --------###############################- ----------##########################-- -------------##################----- ---------------------------------- ------------------------------ ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.02e+25 -1.63e+23 -6.09e+23 -1.63e+23 -9.83e+24 2.00e+24 -6.09e+23 2.00e+24 -3.68e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20120520020352/index.html |
STK = 105 DIP = 45 RAKE = 95 MW = 5.94 HS = 5.0
The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution ENS 2012/05/20 02:03:52:0 44.89 11.23 6.3 5.9 Italy Stations used: GU.PCP GU.POPM IV.AOI IV.ARVD IV.ATVO IV.BDI IV.CESI IV.CING IV.CRMI IV.FDMO IV.FIR IV.FNVD IV.FROS IV.FSSB IV.FVI IV.GUMA IV.LATE IV.MCIV IV.MONC IV.MSSA IV.MURB IV.PLMA IV.PRMA IV.QLNO IV.ROVR IV.SACS IV.SALO IV.SNTG IV.SSFR IV.STAL IV.TEOL IV.TRIF IV.VARE MN.TUE NI.CGRP NI.SABO NI.VINO Filtering commands used: hp c 0.01 n 3 lp c 0.04 n 3 Best Fitting Double Couple Mo = 1.02e+25 dyne-cm Mw = 5.94 Z = 5 km Plane Strike Dip Rake NP1 278 45 85 NP2 105 45 95 Principal Axes: Axis Value Plunge Azimuth T 1.02e+25 86 103 N 0.00e+00 4 281 P -1.02e+25 0 11 Moment Tensor: (dyne-cm) Component Value Mxx -9.83e+24 Mxy -2.00e+24 Mxz -1.63e+23 Myy -3.68e+23 Myz 6.09e+23 Mzz 1.02e+25 ---------- P - -------------- ----- ---------------------------- ------------------------------ ---------------------------------- --------################------------ -----########################--------- ---##############################------- -###################################---- --####################################---- ---#################### ##############-- ----################### T ###############- -----################## ################ ------################################## --------###############################- ----------##########################-- -------------##################----- ---------------------------------- ------------------------------ ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.02e+25 -1.63e+23 -6.09e+23 -1.63e+23 -9.83e+24 2.00e+24 -6.09e+23 2.00e+24 -3.68e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20120520020352/index.html |
May 20, 2012, NORTHERN ITALY, MW=6.1 Goran Ekstrom Meredith Nettles CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C201205200203A DATA: II LD IU DK CU G IC GE MN L.P.BODY WAVES:130S, 285C, T= 40 MANTLE WAVES: 112S, 151C, T=125 SURFACE WAVES: 151S, 370C, T= 50 TIMESTAMP: Q-20120520075314 CENTROID LOCATION: ORIGIN TIME: 02:03:58.5 0.1 LAT:44.93N 0.00;LON: 11.33E 0.01 DEP: 12.0 FIX;TRIANG HDUR: 2.7 MOMENT TENSOR: SCALE 10**25 D-CM RR= 1.450 0.007; TT=-1.360 0.007 PP=-0.092 0.007; RT=-0.467 0.020 RP= 0.556 0.021; TP= 0.484 0.007 PRINCIPAL AXES: 1.(T) VAL= 1.660;PLG=73;AZM=249 2.(N) -0.011; 12; 114 3.(P) -1.651; 12; 21 BEST DBLE.COUPLE:M0= 1.66*10**25 NP1: STRIKE= 96;DIP=35;SLIP= 68 NP2: STRIKE=302;DIP=58;SLIP= 105 --------- ------------- P --- --------------- ----- --------------------------- ############----------------- #################-------------- ####################----------- ########################--------- ############ ###########------- -########### T ############------ --########## #############----# --##########################--# ----########################-## ------###################---# ---------###########------- ----------------------- ------------------- ----------- |
|
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.01 n 3 lp c 0.04 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 265 50 60 5.75 0.3504 WVFGRD96 2.0 270 50 70 5.81 0.3887 WVFGRD96 3.0 280 45 85 5.87 0.4155 WVFGRD96 4.0 105 45 95 5.91 0.4244 WVFGRD96 5.0 105 45 95 5.94 0.4330 WVFGRD96 6.0 105 45 95 5.95 0.3887 WVFGRD96 7.0 265 45 65 5.92 0.3158 WVFGRD96 8.0 245 55 25 5.84 0.2549 WVFGRD96 9.0 235 55 -10 5.82 0.2460 WVFGRD96 10.0 25 30 -5 5.83 0.2502 WVFGRD96 11.0 25 30 -5 5.83 0.2596 WVFGRD96 12.0 20 30 -5 5.83 0.2682 WVFGRD96 13.0 20 30 -5 5.84 0.2745 WVFGRD96 14.0 20 30 -5 5.84 0.2802 WVFGRD96 15.0 20 25 -5 5.87 0.2850 WVFGRD96 16.0 20 30 -5 5.88 0.2904 WVFGRD96 17.0 20 30 -5 5.88 0.2949 WVFGRD96 18.0 20 30 -5 5.89 0.2982 WVFGRD96 19.0 20 30 -5 5.89 0.2996 WVFGRD96 20.0 20 30 -5 5.90 0.3021 WVFGRD96 21.0 20 30 -5 5.90 0.3032 WVFGRD96 22.0 15 30 -10 5.90 0.3041 WVFGRD96 23.0 110 80 65 5.91 0.3068 WVFGRD96 24.0 110 80 65 5.91 0.3095 WVFGRD96 25.0 110 80 60 5.92 0.3121 WVFGRD96 26.0 110 80 60 5.92 0.3142 WVFGRD96 27.0 115 75 65 5.92 0.3164 WVFGRD96 28.0 115 75 65 5.93 0.3185 WVFGRD96 29.0 40 55 -35 5.99 0.3204
The best solution is
WVFGRD96 5.0 105 45 95 5.94 0.4330
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.01 n 3 lp c 0.04 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3 ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Wed May 23 13:21:05 CDT 2012