2012/01/27 14:53:13 44.483 10.033 5.4 60.8 Italy
USGS Felt map for this earthquake
SLU Moment Tensor Solution ENS 2012/01/27 14:53:13:0 44.48 10.03 5.4 60.8 Italy Stations used: GU.BHB GU.FINB GU.NEGI GU.PCP GU.RORO GU.RSP GU.STV GU.TRAV IV.BOB IV.CASP IV.CRMI IV.DOI IV.FIR IV.FNVD IV.FROS IV.MABI IV.MCIV IV.MSSA IV.MTRZ IV.PARC IV.PIEI IV.PLMA IV.PRMA IV.QLNO IV.ROVR IV.TRIF MN.TUE MN.VLC NI.CGRP Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.12e+23 dyne-cm Mw = 5.01 Z = 54 km Plane Strike Dip Rake NP1 294 65 88 NP2 120 25 95 Principal Axes: Axis Value Plunge Azimuth T 4.12e+23 70 200 N 0.00e+00 2 295 P -4.12e+23 20 26 Moment Tensor: (dyne-cm) Component Value Mxx -2.49e+23 Mxy -1.29e+23 Mxz -2.45e+23 Myy -6.55e+22 Myz -1.04e+23 Mzz 3.14e+23 -------------- ----------------- -- -------------------- P ----- --------------------- ------ ---------------------------------- ------------------------------------ -#############------------------------ -####################------------------- -########################--------------- --###########################------------- ---#############################---------- ---###############################-------- ----############## ###############------ ---############## T #################--- -----############ ##################-- -----################################# ------############################## -------##########################- -------######################- -----------############----- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 3.14e+23 -2.45e+23 1.04e+23 -2.45e+23 -2.49e+23 1.29e+23 1.04e+23 1.29e+23 -6.55e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20120127145313/index.html |
STK = 120 DIP = 25 RAKE = 95 MW = 5.01 HS = 54.0
The WUS model was used sinc ethe lower crust of nnCIA is not well defined and since I did not have Green functions for the deepter depths requried for this event.
The following compares this source inversion to others
SLU Moment Tensor Solution ENS 2012/01/27 14:53:13:0 44.48 10.03 5.4 60.8 Italy Stations used: GU.BHB GU.FINB GU.NEGI GU.PCP GU.RORO GU.RSP GU.STV GU.TRAV IV.BOB IV.CASP IV.CRMI IV.DOI IV.FIR IV.FNVD IV.FROS IV.MABI IV.MCIV IV.MSSA IV.MTRZ IV.PARC IV.PIEI IV.PLMA IV.PRMA IV.QLNO IV.ROVR IV.TRIF MN.TUE MN.VLC NI.CGRP Filtering commands used: hp c 0.02 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 4.12e+23 dyne-cm Mw = 5.01 Z = 54 km Plane Strike Dip Rake NP1 294 65 88 NP2 120 25 95 Principal Axes: Axis Value Plunge Azimuth T 4.12e+23 70 200 N 0.00e+00 2 295 P -4.12e+23 20 26 Moment Tensor: (dyne-cm) Component Value Mxx -2.49e+23 Mxy -1.29e+23 Mxz -2.45e+23 Myy -6.55e+22 Myz -1.04e+23 Mzz 3.14e+23 -------------- ----------------- -- -------------------- P ----- --------------------- ------ ---------------------------------- ------------------------------------ -#############------------------------ -####################------------------- -########################--------------- --###########################------------- ---#############################---------- ---###############################-------- ----############## ###############------ ---############## T #################--- -----############ ##################-- -----################################# ------############################## -------##########################- -------######################- -----------############----- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 3.14e+23 -2.45e+23 1.04e+23 -2.45e+23 -2.49e+23 1.29e+23 1.04e+23 1.29e+23 -6.55e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20120127145313/index.html |
|
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.06 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 295 40 -90 4.26 0.1545 WVFGRD96 2.0 295 40 -90 4.38 0.1999 WVFGRD96 3.0 120 65 -85 4.46 0.2048 WVFGRD96 4.0 290 25 -95 4.48 0.2157 WVFGRD96 5.0 290 25 -100 4.48 0.2238 WVFGRD96 6.0 110 70 -90 4.48 0.2373 WVFGRD96 7.0 115 70 -90 4.49 0.2499 WVFGRD96 8.0 290 20 -95 4.56 0.2664 WVFGRD96 9.0 285 20 -100 4.56 0.2764 WVFGRD96 10.0 285 20 -100 4.56 0.2838 WVFGRD96 11.0 120 70 -80 4.56 0.2898 WVFGRD96 12.0 125 70 -75 4.56 0.2982 WVFGRD96 13.0 125 70 -75 4.57 0.3058 WVFGRD96 14.0 125 70 -75 4.57 0.3127 WVFGRD96 15.0 125 70 -75 4.58 0.3188 WVFGRD96 16.0 125 75 -70 4.58 0.3250 WVFGRD96 17.0 125 75 -70 4.59 0.3311 WVFGRD96 18.0 125 75 -70 4.60 0.3363 WVFGRD96 19.0 125 75 -70 4.61 0.3393 WVFGRD96 20.0 125 75 -70 4.61 0.3424 WVFGRD96 21.0 125 75 -70 4.63 0.3485 WVFGRD96 22.0 125 75 -70 4.64 0.3505 WVFGRD96 23.0 125 75 -70 4.64 0.3499 WVFGRD96 24.0 130 80 -65 4.65 0.3518 WVFGRD96 25.0 130 80 -65 4.66 0.3527 WVFGRD96 26.0 130 80 -65 4.66 0.3528 WVFGRD96 27.0 130 80 -70 4.67 0.3530 WVFGRD96 28.0 40 25 20 4.67 0.3534 WVFGRD96 29.0 45 25 25 4.67 0.3588 WVFGRD96 30.0 130 10 105 4.69 0.3672 WVFGRD96 31.0 295 80 85 4.70 0.3756 WVFGRD96 32.0 295 80 85 4.71 0.3834 WVFGRD96 33.0 295 80 85 4.71 0.3911 WVFGRD96 34.0 295 80 85 4.72 0.3979 WVFGRD96 35.0 295 75 85 4.73 0.4058 WVFGRD96 36.0 295 75 85 4.74 0.4128 WVFGRD96 37.0 125 15 100 4.74 0.4184 WVFGRD96 38.0 295 70 85 4.76 0.4259 WVFGRD96 39.0 295 65 85 4.78 0.4341 WVFGRD96 40.0 125 25 100 4.90 0.4289 WVFGRD96 41.0 125 25 100 4.91 0.4389 WVFGRD96 42.0 120 25 95 4.92 0.4480 WVFGRD96 43.0 295 65 85 4.93 0.4566 WVFGRD96 44.0 120 25 95 4.94 0.4642 WVFGRD96 45.0 120 25 95 4.95 0.4715 WVFGRD96 46.0 295 65 85 4.96 0.4775 WVFGRD96 47.0 295 65 85 4.97 0.4835 WVFGRD96 48.0 120 25 95 4.97 0.4883 WVFGRD96 49.0 120 25 95 4.98 0.4923 WVFGRD96 50.0 295 65 85 4.99 0.4956 WVFGRD96 51.0 295 65 85 4.99 0.4976 WVFGRD96 52.0 120 25 95 5.00 0.4999 WVFGRD96 53.0 120 25 95 5.00 0.5001 WVFGRD96 54.0 120 25 95 5.01 0.5007 WVFGRD96 55.0 120 25 95 5.01 0.4999 WVFGRD96 56.0 295 65 85 5.02 0.4982 WVFGRD96 57.0 295 65 85 5.02 0.4961 WVFGRD96 58.0 295 65 85 5.02 0.4932 WVFGRD96 59.0 295 65 85 5.03 0.4905 WVFGRD96 60.0 295 65 85 5.03 0.4863 WVFGRD96 61.0 295 65 85 5.03 0.4821 WVFGRD96 62.0 295 65 85 5.03 0.4774 WVFGRD96 63.0 295 65 85 5.03 0.4718 WVFGRD96 64.0 295 65 85 5.03 0.4665 WVFGRD96 65.0 290 65 90 5.03 0.4606 WVFGRD96 66.0 290 65 90 5.03 0.4547 WVFGRD96 67.0 290 65 90 5.03 0.4486 WVFGRD96 68.0 290 65 90 5.03 0.4425 WVFGRD96 69.0 290 65 85 5.03 0.4356
The best solution is
WVFGRD96 54.0 120 25 95 5.01 0.5007
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.06 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Thu Feb 16 11:22:57 CST 2012