2009/05/10 16:00:07 42.301 13.479 10.0 3.50 Italy
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2009/05/10 16:00:07:0 42.30 13.48 10.0 3.5 Italy Stations used: .-1 Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 9.44e+20 dyne-cm Mw = 3.25 Z = 1 km Plane Strike Dip Rake NP1 155 45 -90 NP2 335 45 -90 Principal Axes: Axis Value Plunge Azimuth T 9.44e+20 -0 245 N 0.00e+00 -0 155 P -9.44e+20 90 10 Moment Tensor: (dyne-cm) Component Value Mxx 1.69e+20 Mxy 3.62e+20 Mxz 4.39e+13 Myy 7.75e+20 Myz 2.51e+13 Mzz -9.44e+20 ############## #-------############## ###------------############# ###---------------############ #####-----------------############ ######-------------------########### ######---------------------########### #######----------------------########### #######------------ --------########## #########----------- P ---------########## #########----------- ----------######### #########------------------------######### ##########-----------------------######### ##########-----------------------####### ########----------------------####### T #########---------------------###### ##########-------------------###### ############-----------------##### ############---------------### #############------------### ##############-------# ############## Global CMT Convention Moment Tensor: R T P -9.44e+20 4.39e+13 -2.51e+13 4.39e+13 1.69e+20 -3.62e+20 -2.51e+13 -3.62e+20 7.75e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090510160007/index.html |
STK = 335 DIP = 45 RAKE = -90 MW = 3.25 HS = 1.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2009/05/10 16:00:07:0 42.30 13.48 10.0 3.5 Italy Stations used: .-1 Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 9.44e+20 dyne-cm Mw = 3.25 Z = 1 km Plane Strike Dip Rake NP1 155 45 -90 NP2 335 45 -90 Principal Axes: Axis Value Plunge Azimuth T 9.44e+20 -0 245 N 0.00e+00 -0 155 P -9.44e+20 90 10 Moment Tensor: (dyne-cm) Component Value Mxx 1.69e+20 Mxy 3.62e+20 Mxz 4.39e+13 Myy 7.75e+20 Myz 2.51e+13 Mzz -9.44e+20 ############## #-------############## ###------------############# ###---------------############ #####-----------------############ ######-------------------########### ######---------------------########### #######----------------------########### #######------------ --------########## #########----------- P ---------########## #########----------- ----------######### #########------------------------######### ##########-----------------------######### ##########-----------------------####### ########----------------------####### T #########---------------------###### ##########-------------------###### ############-----------------##### ############---------------### #############------------### ##############-------# ############## Global CMT Convention Moment Tensor: R T P -9.44e+20 4.39e+13 -2.51e+13 4.39e+13 1.69e+20 -3.62e+20 -2.51e+13 -3.62e+20 7.75e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090510160007/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 335 45 -90 3.25 0.4983 WVFGRD96 2.0 340 45 -85 3.31 0.4771 WVFGRD96 3.0 0 30 -60 3.34 0.4561 WVFGRD96 4.0 5 35 -55 3.34 0.4359 WVFGRD96 5.0 5 30 -50 3.41 0.4512 WVFGRD96 6.0 5 30 -50 3.40 0.4259 WVFGRD96 7.0 15 35 -35 3.39 0.4082 WVFGRD96 8.0 35 55 20 3.36 0.4006 WVFGRD96 9.0 35 55 25 3.37 0.3933 WVFGRD96 10.0 35 55 25 3.38 0.3855 WVFGRD96 11.0 35 55 25 3.39 0.3770 WVFGRD96 12.0 35 55 25 3.40 0.3683 WVFGRD96 13.0 35 55 25 3.41 0.3592 WVFGRD96 14.0 35 55 30 3.42 0.3525 WVFGRD96 15.0 40 50 30 3.44 0.3354 WVFGRD96 16.0 40 50 35 3.45 0.3270 WVFGRD96 17.0 50 40 30 3.46 0.3205 WVFGRD96 18.0 50 40 30 3.47 0.3133 WVFGRD96 19.0 50 40 30 3.48 0.3055 WVFGRD96 20.0 140 75 60 3.48 0.3079 WVFGRD96 21.0 140 75 60 3.49 0.3094 WVFGRD96 22.0 135 75 60 3.51 0.3107 WVFGRD96 23.0 140 70 60 3.51 0.3138 WVFGRD96 24.0 140 70 60 3.52 0.3160 WVFGRD96 25.0 135 70 60 3.53 0.3175 WVFGRD96 26.0 135 70 60 3.54 0.3161 WVFGRD96 27.0 140 65 60 3.54 0.3130 WVFGRD96 28.0 135 65 60 3.55 0.3113 WVFGRD96 29.0 135 65 60 3.56 0.3086
The best solution is
WVFGRD96 1.0 335 45 -90 3.25 0.4983
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3 ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Mon May 11 09:04:40 CDT 2009