2009/04/14 07:36:44 42.495 13.395 8.8 2.9 Italy
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2009/04/14 07:36:44:5 42.49 13.40 8.8 2.9 Italy Stations used: IV.ASSB IV.NRCA IV.TERO MN.AQU Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.98e+20 dyne-cm Mw = 3.00 Z = 6 km Plane Strike Dip Rake NP1 108 66 -123 NP2 345 40 -40 Principal Axes: Axis Value Plunge Azimuth T 3.98e+20 14 221 N 0.00e+00 29 123 P -3.98e+20 56 334 Moment Tensor: (dyne-cm) Component Value Mxx 1.15e+20 Mxy 2.33e+20 Mxz -2.37e+20 Myy 1.37e+20 Myz 1.75e+19 Mzz -2.52e+20 ----########## -------------######### ------------------########## ---------------------######### -------------------------######### ------------- -----------######### -------------- P ------------######### --------------- -------------######### #-------------------------------######## ####-----------------------------######### ######---------------------------######### #########-------------------------######## ############----------------------######## ###############------------------####### ####################-------------######- ###############################------- ##############################------ #### #####################------ ## T ####################----- # ###################----- ###################--- #############- Global CMT Convention Moment Tensor: R T P -2.52e+20 -2.37e+20 -1.75e+19 -2.37e+20 1.15e+20 -2.33e+20 -1.75e+19 -2.33e+20 1.37e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090414073644/index.html |
STK = 345 DIP = 40 RAKE = -40 MW = 3.00 HS = 6.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2009/04/14 07:36:44:5 42.49 13.40 8.8 2.9 Italy Stations used: IV.ASSB IV.NRCA IV.TERO MN.AQU Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.98e+20 dyne-cm Mw = 3.00 Z = 6 km Plane Strike Dip Rake NP1 108 66 -123 NP2 345 40 -40 Principal Axes: Axis Value Plunge Azimuth T 3.98e+20 14 221 N 0.00e+00 29 123 P -3.98e+20 56 334 Moment Tensor: (dyne-cm) Component Value Mxx 1.15e+20 Mxy 2.33e+20 Mxz -2.37e+20 Myy 1.37e+20 Myz 1.75e+19 Mzz -2.52e+20 ----########## -------------######### ------------------########## ---------------------######### -------------------------######### ------------- -----------######### -------------- P ------------######### --------------- -------------######### #-------------------------------######## ####-----------------------------######### ######---------------------------######### #########-------------------------######## ############----------------------######## ###############------------------####### ####################-------------######- ###############################------- ##############################------ #### #####################------ ## T ####################----- # ###################----- ###################--- #############- Global CMT Convention Moment Tensor: R T P -2.52e+20 -2.37e+20 -1.75e+19 -2.37e+20 1.15e+20 -2.33e+20 -1.75e+19 -2.33e+20 1.37e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090414073644/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 210 90 55 2.82 0.3728 WVFGRD96 2.0 350 20 -10 2.91 0.4560 WVFGRD96 3.0 350 30 -15 2.88 0.5566 WVFGRD96 4.0 350 40 -30 2.89 0.6037 WVFGRD96 5.0 350 35 -25 2.97 0.6199 WVFGRD96 6.0 345 40 -40 3.00 0.6260 WVFGRD96 7.0 350 40 -15 2.96 0.6033 WVFGRD96 8.0 350 50 -15 2.95 0.5837 WVFGRD96 9.0 350 50 -10 2.95 0.5694 WVFGRD96 10.0 345 45 -5 2.95 0.5550 WVFGRD96 11.0 345 50 -5 2.98 0.5414 WVFGRD96 12.0 340 45 -10 2.97 0.5298 WVFGRD96 13.0 340 50 -5 3.01 0.5204 WVFGRD96 14.0 335 50 -10 3.02 0.5154 WVFGRD96 15.0 330 50 -15 3.07 0.5151 WVFGRD96 16.0 325 50 -15 3.10 0.5161 WVFGRD96 17.0 325 55 -10 3.15 0.5178 WVFGRD96 18.0 325 55 -15 3.15 0.5206 WVFGRD96 19.0 325 55 -15 3.16 0.5180 WVFGRD96 20.0 320 55 -15 3.19 0.5175 WVFGRD96 21.0 220 80 25 3.21 0.5166 WVFGRD96 22.0 220 80 20 3.25 0.5242 WVFGRD96 23.0 220 80 20 3.26 0.5328 WVFGRD96 24.0 220 80 20 3.27 0.5423 WVFGRD96 25.0 215 85 20 3.26 0.5492 WVFGRD96 26.0 220 85 20 3.29 0.5567 WVFGRD96 27.0 220 85 20 3.30 0.5624 WVFGRD96 28.0 220 85 20 3.32 0.5652 WVFGRD96 29.0 35 90 -15 3.35 0.5657
The best solution is
WVFGRD96 6.0 345 40 -40 3.00 0.6260
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3 ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Mon May 17 13:25:48 CDT 2010