2009/04/12 18:09:42 42.271 13.498 9.8 2.9 Italy
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2009/04/12 18:09:42:0 42.27 13.50 9.8 2.9 Italy Stations used: IV.FIAM IV.LPEL IV.TERO MN.AQU Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.02e+20 dyne-cm Mw = 2.92 Z = 6 km Plane Strike Dip Rake NP1 160 70 -80 NP2 313 22 -116 Principal Axes: Axis Value Plunge Azimuth T 3.02e+20 24 242 N 0.00e+00 9 337 P -3.02e+20 64 86 Moment Tensor: (dyne-cm) Component Value Mxx 5.40e+19 Mxy 9.92e+19 Mxz -6.11e+19 Myy 1.37e+20 Myz -2.20e+20 Mzz -1.91e+20 ############## ---#-------########### -#####--------------######## #######-----------------###### #########-------------------###### ##########---------------------##### ############---------------------##### #############----------------------##### #############-----------------------#### ###############----------- ---------#### ###############----------- P ----------### ################---------- ----------### #################----------------------### #### #########----------------------## #### T ##########---------------------## ### ###########--------------------# #################------------------# #################----------------# #################------------- #################----------- ################------ ############## Global CMT Convention Moment Tensor: R T P -1.91e+20 -6.11e+19 2.20e+20 -6.11e+19 5.40e+19 -9.92e+19 2.20e+20 -9.92e+19 1.37e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090412180942/index.html |
STK = 160 DIP = 70 RAKE = -80 MW = 2.92 HS = 6.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2009/04/12 18:09:42:0 42.27 13.50 9.8 2.9 Italy Stations used: IV.FIAM IV.LPEL IV.TERO MN.AQU Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.02e+20 dyne-cm Mw = 2.92 Z = 6 km Plane Strike Dip Rake NP1 160 70 -80 NP2 313 22 -116 Principal Axes: Axis Value Plunge Azimuth T 3.02e+20 24 242 N 0.00e+00 9 337 P -3.02e+20 64 86 Moment Tensor: (dyne-cm) Component Value Mxx 5.40e+19 Mxy 9.92e+19 Mxz -6.11e+19 Myy 1.37e+20 Myz -2.20e+20 Mzz -1.91e+20 ############## ---#-------########### -#####--------------######## #######-----------------###### #########-------------------###### ##########---------------------##### ############---------------------##### #############----------------------##### #############-----------------------#### ###############----------- ---------#### ###############----------- P ----------### ################---------- ----------### #################----------------------### #### #########----------------------## #### T ##########---------------------## ### ###########--------------------# #################------------------# #################----------------# #################------------- #################----------- ################------ ############## Global CMT Convention Moment Tensor: R T P -1.91e+20 -6.11e+19 2.20e+20 -6.11e+19 5.40e+19 -9.92e+19 2.20e+20 -9.92e+19 1.37e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090412180942/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 160 75 25 2.75 0.2563 WVFGRD96 2.0 160 75 35 2.84 0.2712 WVFGRD96 3.0 350 90 75 2.82 0.3002 WVFGRD96 4.0 165 80 -75 2.81 0.3262 WVFGRD96 5.0 165 80 -75 2.90 0.3402 WVFGRD96 6.0 160 70 -80 2.92 0.3495 WVFGRD96 7.0 160 70 -80 2.92 0.3478 WVFGRD96 8.0 160 65 -85 2.89 0.3369 WVFGRD96 9.0 160 65 -85 2.88 0.3254 WVFGRD96 10.0 160 65 -85 2.88 0.3149 WVFGRD96 11.0 160 65 -85 2.89 0.3063 WVFGRD96 12.0 175 90 -50 2.88 0.2991 WVFGRD96 13.0 340 25 -90 2.91 0.2911 WVFGRD96 14.0 330 35 -100 2.91 0.2844 WVFGRD96 15.0 160 55 -85 2.95 0.2802 WVFGRD96 16.0 165 70 -55 2.93 0.2732 WVFGRD96 17.0 165 70 -60 2.94 0.2694 WVFGRD96 18.0 165 70 -65 2.96 0.2692 WVFGRD96 19.0 165 70 -70 2.97 0.2689 WVFGRD96 20.0 160 65 -75 2.99 0.2705 WVFGRD96 21.0 155 65 -80 3.01 0.2723 WVFGRD96 22.0 155 65 -90 3.03 0.2744 WVFGRD96 23.0 155 65 -90 3.04 0.2764 WVFGRD96 24.0 20 30 -50 3.10 0.2784 WVFGRD96 25.0 30 35 -40 3.13 0.2781 WVFGRD96 26.0 355 30 -70 3.09 0.2764 WVFGRD96 27.0 30 40 -40 3.15 0.2734 WVFGRD96 28.0 30 40 -40 3.16 0.2692 WVFGRD96 29.0 35 45 -35 3.19 0.2634
The best solution is
WVFGRD96 6.0 160 70 -80 2.92 0.3495
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3 ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Mon May 17 13:33:39 CDT 2010