2009/04/10 19:07:21 42.375 13.393 9.5 3.10 Italy
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2009/04/10 19:07:21:0 42.38 13.39 9.5 3.1 Italy Stations used: IV.CAFR IV.CERT IV.CESX IV.FAGN IV.FDMO IV.FIAM IV.GUAR IV.INTR IV.LATE IV.LPEL IV.MNS IV.MODR IV.MTCE IV.OFFI IV.PTRJ IV.RDP IV.RMP IV.SGG IV.TERO Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 6.46e+20 dyne-cm Mw = 3.14 Z = 2 km Plane Strike Dip Rake NP1 323 51 -82 NP2 130 40 -100 Principal Axes: Axis Value Plunge Azimuth T 6.46e+20 5 47 N 0.00e+00 6 138 P -6.46e+20 82 277 Moment Tensor: (dyne-cm) Component Value Mxx 2.96e+20 Mxy 3.21e+20 Mxz 2.94e+19 Myy 3.30e+20 Myz 1.37e+20 Mzz -6.26e+20 ############## ###################### ---------################## --------------############## T #------------------########### # #---------------------############## ##-----------------------############# ###------------------------############# ####-------------------------########### #####----------- ------------########### ######---------- P -------------########## ######---------- --------------######### #######--------------------------######### ########-------------------------####### #########------------------------####### ##########-----------------------##### ###########---------------------#### #############------------------### ##############--------------## ###########################- ###################### ############## Global CMT Convention Moment Tensor: R T P -6.26e+20 2.94e+19 -1.37e+20 2.94e+19 2.96e+20 -3.21e+20 -1.37e+20 -3.21e+20 3.30e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090410190721/index.html |
STK = 130 DIP = 40 RAKE = -100 MW = 3.14 HS = 2.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2009/04/10 19:07:21:0 42.38 13.39 9.5 3.1 Italy Stations used: IV.CAFR IV.CERT IV.CESX IV.FAGN IV.FDMO IV.FIAM IV.GUAR IV.INTR IV.LATE IV.LPEL IV.MNS IV.MODR IV.MTCE IV.OFFI IV.PTRJ IV.RDP IV.RMP IV.SGG IV.TERO Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 6.46e+20 dyne-cm Mw = 3.14 Z = 2 km Plane Strike Dip Rake NP1 323 51 -82 NP2 130 40 -100 Principal Axes: Axis Value Plunge Azimuth T 6.46e+20 5 47 N 0.00e+00 6 138 P -6.46e+20 82 277 Moment Tensor: (dyne-cm) Component Value Mxx 2.96e+20 Mxy 3.21e+20 Mxz 2.94e+19 Myy 3.30e+20 Myz 1.37e+20 Mzz -6.26e+20 ############## ###################### ---------################## --------------############## T #------------------########### # #---------------------############## ##-----------------------############# ###------------------------############# ####-------------------------########### #####----------- ------------########### ######---------- P -------------########## ######---------- --------------######### #######--------------------------######### ########-------------------------####### #########------------------------####### ##########-----------------------##### ###########---------------------#### #############------------------### ##############--------------## ###########################- ###################### ############## Global CMT Convention Moment Tensor: R T P -6.26e+20 2.94e+19 -1.37e+20 2.94e+19 2.96e+20 -3.21e+20 -1.37e+20 -3.21e+20 3.30e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090410190721/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 325 55 -85 2.99 0.2676 WVFGRD96 1.0 325 50 -80 3.05 0.2993 WVFGRD96 2.0 130 40 -100 3.14 0.3181 WVFGRD96 3.0 155 45 -60 3.14 0.2618 WVFGRD96 4.0 25 35 -20 3.07 0.2119 WVFGRD96 5.0 5 25 -30 3.16 0.2258 WVFGRD96 6.0 15 30 -30 3.17 0.2386 WVFGRD96 7.0 20 30 -20 3.17 0.2467 WVFGRD96 8.0 25 35 -20 3.14 0.2510 WVFGRD96 9.0 20 35 -25 3.15 0.2528 WVFGRD96 10.0 20 35 -25 3.16 0.2534 WVFGRD96 11.0 20 35 -25 3.18 0.2524 WVFGRD96 12.0 20 35 -25 3.19 0.2505 WVFGRD96 13.0 15 35 -30 3.19 0.2483 WVFGRD96 14.0 15 35 -35 3.21 0.2451 WVFGRD96 15.0 5 30 -40 3.24 0.2420 WVFGRD96 16.0 5 30 -45 3.25 0.2384 WVFGRD96 17.0 0 30 -50 3.26 0.2352 WVFGRD96 18.0 355 30 -60 3.27 0.2324 WVFGRD96 19.0 355 30 -60 3.28 0.2310 WVFGRD96 20.0 345 30 -70 3.29 0.2302 WVFGRD96 21.0 320 30 -95 3.31 0.2320 WVFGRD96 22.0 150 60 -85 3.32 0.2353 WVFGRD96 23.0 150 60 -80 3.34 0.2377 WVFGRD96 24.0 150 55 -75 3.35 0.2397 WVFGRD96 25.0 150 55 -75 3.36 0.2403 WVFGRD96 26.0 155 55 -70 3.37 0.2383 WVFGRD96 27.0 155 55 -70 3.37 0.2342 WVFGRD96 28.0 150 50 -75 3.38 0.2300 WVFGRD96 29.0 150 50 -75 3.40 0.2271
The best solution is
WVFGRD96 2.0 130 40 -100 3.14 0.3181
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3 ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Wed Apr 29 12:01:35 CDT 2009