2009/04/08 22:56:50 42.5070 13.3640 10.2 4.30 Italy
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2009/04/08 22:56:50:0 42.51 13.36 10.2 4.3 Italy Stations used: IV.ARVD IV.ASSB IV.CERT IV.CESI IV.CESX IV.CING IV.FAGN IV.FDMO IV.FIAM IV.GUAR IV.INTR IV.LATE IV.LNSS IV.MA9 IV.MGAB IV.MIDA IV.MNS IV.MTCE IV.MURB IV.NRCA IV.PIEI IV.RDP IV.SACS IV.TERO IV.TOLF IV.TRTR Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 7.76e+21 dyne-cm Mw = 3.86 Z = 8 km Plane Strike Dip Rake NP1 297 71 -107 NP2 160 25 -50 Principal Axes: Axis Value Plunge Azimuth T 7.76e+21 24 40 N 0.00e+00 16 303 P -7.76e+21 60 183 Moment Tensor: (dyne-cm) Component Value Mxx 1.89e+21 Mxy 3.08e+21 Mxz 5.56e+21 Myy 2.67e+21 Myz 2.05e+21 Mzz -4.56e+21 ############## -##################### ---######################### --###################### ### ---####################### T ##### ---######################## ###### ####-------########################### ####-------------####################### ####------------------################## #####---------------------################ #####------------------------############# #####---------------------------########## #####-----------------------------######## #####------------------------------##### ######------------ ---------------#### #####------------ P -----------------# ######---------- ----------------- ######---------------------------- ######------------------------ #######--------------------- #######--------------- #########----- Global CMT Convention Moment Tensor: R T P -4.56e+21 5.56e+21 -2.05e+21 5.56e+21 1.89e+21 -3.08e+21 -2.05e+21 -3.08e+21 2.67e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090408225650/index.html |
STK = 160 DIP = 25 RAKE = -50 MW = 3.86 HS = 8.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2009/04/08 22:56:50:0 42.51 13.36 10.2 4.3 Italy Stations used: IV.ARVD IV.ASSB IV.CERT IV.CESI IV.CESX IV.CING IV.FAGN IV.FDMO IV.FIAM IV.GUAR IV.INTR IV.LATE IV.LNSS IV.MA9 IV.MGAB IV.MIDA IV.MNS IV.MTCE IV.MURB IV.NRCA IV.PIEI IV.RDP IV.SACS IV.TERO IV.TOLF IV.TRTR Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 7.76e+21 dyne-cm Mw = 3.86 Z = 8 km Plane Strike Dip Rake NP1 297 71 -107 NP2 160 25 -50 Principal Axes: Axis Value Plunge Azimuth T 7.76e+21 24 40 N 0.00e+00 16 303 P -7.76e+21 60 183 Moment Tensor: (dyne-cm) Component Value Mxx 1.89e+21 Mxy 3.08e+21 Mxz 5.56e+21 Myy 2.67e+21 Myz 2.05e+21 Mzz -4.56e+21 ############## -##################### ---######################### --###################### ### ---####################### T ##### ---######################## ###### ####-------########################### ####-------------####################### ####------------------################## #####---------------------################ #####------------------------############# #####---------------------------########## #####-----------------------------######## #####------------------------------##### ######------------ ---------------#### #####------------ P -----------------# ######---------- ----------------- ######---------------------------- ######------------------------ #######--------------------- #######--------------- #########----- Global CMT Convention Moment Tensor: R T P -4.56e+21 5.56e+21 -2.05e+21 5.56e+21 1.89e+21 -3.08e+21 -2.05e+21 -3.08e+21 2.67e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090408225650/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 130 45 -90 3.51 0.3353 WVFGRD96 1.0 175 70 -20 3.45 0.2493 WVFGRD96 2.0 325 45 -70 3.67 0.3199 WVFGRD96 3.0 170 25 -30 3.72 0.3354 WVFGRD96 4.0 170 20 -35 3.74 0.4062 WVFGRD96 5.0 160 20 -50 3.76 0.4540 WVFGRD96 6.0 170 25 -40 3.77 0.4840 WVFGRD96 7.0 170 25 -40 3.77 0.5001 WVFGRD96 8.0 160 25 -50 3.86 0.5144 WVFGRD96 9.0 165 30 -50 3.87 0.5097 WVFGRD96 10.0 165 30 -50 3.87 0.4989 WVFGRD96 11.0 170 30 -45 3.88 0.4862 WVFGRD96 12.0 170 30 -45 3.88 0.4709 WVFGRD96 13.0 340 70 -50 3.91 0.4590 WVFGRD96 14.0 340 70 -50 3.92 0.4499 WVFGRD96 15.0 345 70 -40 3.94 0.4414 WVFGRD96 16.0 345 70 -40 3.95 0.4335 WVFGRD96 17.0 345 70 -40 3.96 0.4248 WVFGRD96 18.0 345 70 -40 3.97 0.4151 WVFGRD96 19.0 345 70 -40 3.98 0.4048 WVFGRD96 20.0 345 70 -40 3.99 0.3931 WVFGRD96 21.0 345 70 -40 4.00 0.3827 WVFGRD96 22.0 345 70 -40 4.01 0.3697 WVFGRD96 23.0 345 70 -40 4.01 0.3569 WVFGRD96 24.0 345 70 -40 4.02 0.3437 WVFGRD96 25.0 345 70 -40 4.02 0.3304 WVFGRD96 26.0 350 75 -40 4.03 0.3181 WVFGRD96 27.0 350 75 -40 4.03 0.3058 WVFGRD96 28.0 350 75 -40 4.03 0.2927 WVFGRD96 29.0 160 80 60 4.02 0.2836
The best solution is
WVFGRD96 8.0 160 25 -50 3.86 0.5144
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Thu Apr 16 12:23:40 CDT 2009