2009/04/07 17:47:37 42.275 13.464 15.0 5.30 Italy
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2009/04/07 17:47:37:0 42.28 13.46 15.0 5.3 Italy Stations used: IV.ARCI IV.BSSO IV.CAFR IV.CASP IV.CERT IV.CMPR IV.CRE IV.CSNT IV.GIUL IV.GUAR IV.LNSS IV.MAON IV.MCEL IV.MIDA IV.MNS IV.MODR IV.MSAG IV.MTCE IV.MTSN IV.MURB IV.NRCA IV.PARC IV.PESA IV.RMP IV.SGRT IV.SIRI IV.TOLF IV.TRIV Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.24e+24 dyne-cm Mw = 5.50 Z = 18 km Plane Strike Dip Rake NP1 340 75 -60 NP2 94 33 -152 Principal Axes: Axis Value Plunge Azimuth T 2.24e+24 24 47 N 0.00e+00 29 151 P -2.24e+24 51 284 Moment Tensor: (dyne-cm) Component Value Mxx 8.08e+23 Mxy 1.14e+24 Mxz 3.02e+23 Myy 1.61e+23 Myz 1.68e+24 Mzz -9.69e+23 ############## ------################ ----------################## -------------################# ----------------########### #### ------------------########## T ##### --------------------######### ###### ----------------------################## --------- ----------################## ---------- P -----------################## ---------- ------------################# #------------------------################# ##------------------------###############- ##-----------------------##############- ####----------------------############-- ####---------------------##########--- ######-------------------#######---- ########----------------###------- #############-----####-------- #####################------- ##################---- ############## Global CMT Convention Moment Tensor: R T P -9.69e+23 3.02e+23 -1.68e+24 3.02e+23 8.08e+23 -1.14e+24 -1.68e+24 -1.14e+24 1.61e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090407174737/index.html |
STK = 340 DIP = 75 RAKE = -60 MW = 5.50 HS = 18.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2009/04/07 17:47:37:0 42.28 13.46 15.0 5.3 Italy Stations used: IV.ARCI IV.BSSO IV.CAFR IV.CASP IV.CERT IV.CMPR IV.CRE IV.CSNT IV.GIUL IV.GUAR IV.LNSS IV.MAON IV.MCEL IV.MIDA IV.MNS IV.MODR IV.MSAG IV.MTCE IV.MTSN IV.MURB IV.NRCA IV.PARC IV.PESA IV.RMP IV.SGRT IV.SIRI IV.TOLF IV.TRIV Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.24e+24 dyne-cm Mw = 5.50 Z = 18 km Plane Strike Dip Rake NP1 340 75 -60 NP2 94 33 -152 Principal Axes: Axis Value Plunge Azimuth T 2.24e+24 24 47 N 0.00e+00 29 151 P -2.24e+24 51 284 Moment Tensor: (dyne-cm) Component Value Mxx 8.08e+23 Mxy 1.14e+24 Mxz 3.02e+23 Myy 1.61e+23 Myz 1.68e+24 Mzz -9.69e+23 ############## ------################ ----------################## -------------################# ----------------########### #### ------------------########## T ##### --------------------######### ###### ----------------------################## --------- ----------################## ---------- P -----------################## ---------- ------------################# #------------------------################# ##------------------------###############- ##-----------------------##############- ####----------------------############-- ####---------------------##########--- ######-------------------#######---- ########----------------###------- #############-----####-------- #####################------- ##################---- ############## Global CMT Convention Moment Tensor: R T P -9.69e+23 3.02e+23 -1.68e+24 3.02e+23 8.08e+23 -1.14e+24 -1.68e+24 -1.14e+24 1.61e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090407174737/index.html |
April 7, 2009, CENTRAL ITALY, MW=5.5 Liz Starin CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C200904071747A DATA: II IU CU G GE L.P.BODY WAVES: 65S, 111C, T= 40 MANTLE WAVES: 13S, 13C, T=125 SURFACE WAVES: 84S, 155C, T= 50 TIMESTAMP: Q-20090407170307 CENTROID LOCATION: ORIGIN TIME: 17:47:42.3 0.1 LAT:42.26N 0.01;LON: 13.46E 0.01 DEP: 20.0 0.5;TRIANG HDUR: 1.4 MOMENT TENSOR: SCALE 10**24 D-CM RR=-1.630 0.038; TT= 0.767 0.030 PP= 0.865 0.031; RT=-0.763 0.066 RP=-1.120 0.071; TP=-1.590 0.026 PRINCIPAL AXES: 1.(T) VAL= 2.428;PLG= 4;AZM= 48 2.(N) 0.181; 36; 141 3.(P) -2.607; 54; 312 BEST DBLE.COUPLE:M0= 2.52*10**24 NP1: STRIKE=106;DIP=51;SLIP=-138 NP2: STRIKE=347;DIP=59;SLIP= -47 ---######## ---------########## -------------######### ----------------######## T ------------------####### # --------- --------########### --------- P ---------########## #--------- ---------########### ##---------------------########## ####-------------------########## #####------------------########## #######---------------######### ##########------------#######-- ################------------- ####################------- #################------ ###############---- ##########- |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 330 45 -90 4.95 0.2175 WVFGRD96 1.0 150 45 -90 4.96 0.1730 WVFGRD96 2.0 330 45 -90 5.13 0.2486 WVFGRD96 3.0 170 70 -50 5.09 0.1827 WVFGRD96 4.0 175 90 60 5.14 0.2170 WVFGRD96 5.0 170 90 60 5.17 0.2712 WVFGRD96 6.0 170 90 60 5.20 0.3210 WVFGRD96 7.0 350 90 -55 5.22 0.3644 WVFGRD96 8.0 170 90 60 5.30 0.3988 WVFGRD96 9.0 345 80 -60 5.33 0.4441 WVFGRD96 10.0 340 75 -60 5.36 0.4836 WVFGRD96 11.0 340 75 -60 5.38 0.5191 WVFGRD96 12.0 340 75 -60 5.40 0.5488 WVFGRD96 13.0 340 75 -60 5.42 0.5732 WVFGRD96 14.0 340 75 -60 5.44 0.5925 WVFGRD96 15.0 340 75 -60 5.46 0.6068 WVFGRD96 16.0 340 75 -60 5.47 0.6164 WVFGRD96 17.0 340 75 -60 5.49 0.6219 WVFGRD96 18.0 340 75 -60 5.50 0.6232 WVFGRD96 19.0 340 75 -60 5.52 0.6212 WVFGRD96 20.0 340 75 -60 5.53 0.6164 WVFGRD96 21.0 340 75 -60 5.54 0.6095 WVFGRD96 22.0 340 75 -60 5.55 0.5995 WVFGRD96 23.0 340 75 -60 5.56 0.5875 WVFGRD96 24.0 340 75 -60 5.57 0.5737 WVFGRD96 25.0 340 75 -65 5.57 0.5589 WVFGRD96 26.0 340 75 -65 5.58 0.5432 WVFGRD96 27.0 340 75 -65 5.59 0.5265 WVFGRD96 28.0 340 75 -65 5.59 0.5096 WVFGRD96 29.0 340 75 -65 5.60 0.4923
The best solution is
WVFGRD96 18.0 340 75 -60 5.50 0.6232
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Mon Aug 31 14:56:03 CDT 2009