2009/04/07 12:29:28 42.437 13.403 12 3.30 Italy
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2009/04/07 12:29:28:0 42.44 13.40 12.0 3.3 Italy Stations used: IV.AOI IV.ARVD IV.ASSB IV.BSSO IV.CERA IV.CERT IV.CING IV.FAGN IV.FDMO IV.FIAM IV.GUAR IV.INTR IV.MIDA IV.MNS IV.OFFI IV.PIEI IV.PTRJ IV.SACS IV.TERO IV.TOLF IV.TRIV IV.VAGA MN.AQU Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.05e+21 dyne-cm Mw = 3.59 Z = 7 km Plane Strike Dip Rake NP1 149 55 -93 NP2 335 35 -85 Principal Axes: Axis Value Plunge Azimuth T 3.05e+21 10 241 N 0.00e+00 3 151 P -3.05e+21 79 45 Moment Tensor: (dyne-cm) Component Value Mxx 6.28e+20 Mxy 1.19e+21 Mxz -6.38e+20 Myy 2.23e+21 Myz -8.51e+20 Mzz -2.86e+21 ############## -----------########### ###---------------########## ###------------------######### #####--------------------######### ######----------------------######## #######-----------------------######## ########------------------------######## #########------------ ---------####### ##########------------ P ---------######## ###########----------- ----------####### ############-----------------------####### ############------------------------###### #############----------------------##### ## #########--------------------###### # T ##########-------------------##### ############-----------------#### ################--------------#### ################-----------### ##################-------### ####################-# ############## Global CMT Convention Moment Tensor: R T P -2.86e+21 -6.38e+20 8.51e+20 -6.38e+20 6.28e+20 -1.19e+21 8.51e+20 -1.19e+21 2.23e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090407122928/index.html |
STK = 335 DIP = 35 RAKE = -85 MW = 3.59 HS = 7.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2009/04/07 12:29:00:0 42.46 13.41 8.3 3.3 Italy Stations used: IV.ARVD IV.ASSB IV.BSSO IV.CAFI IV.CERT IV.CESI IV.CING IV.FAGN IV.FDMO IV.FIAM IV.GUAR IV.INTR IV.MIDA IV.MNS IV.OFFI IV.PIEI IV.PTRJ IV.SACS IV.SGG IV.TERO IV.TOLF IV.VAGA MN.AQU Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.24e+20 dyne-cm Mw = 2.94 Z = 19 km Plane Strike Dip Rake NP1 330 75 -85 NP2 131 16 -108 Principal Axes: Axis Value Plunge Azimuth T 3.24e+20 30 56 N 0.00e+00 5 149 P -3.24e+20 60 247 Moment Tensor: (dyne-cm) Component Value Mxx 6.39e+19 Mxy 8.34e+19 Mxz 1.33e+20 Myy 9.73e+19 Myz 2.45e+20 Mzz -1.61e+20 ############## -##################### -------##################### ----------#################### -------------##################### #---------------############# #### #-----------------############ T ##### #-------------------########### ###### #---------------------################## ##----------------------################## ##-----------------------################# ##----------- ----------################ ###---------- P -----------############### ##---------- ------------############# ###------------------------############# ###------------------------########### ###------------------------######### ####----------------------######## ####---------------------##### ######------------------###- #######-------------#- ############## Global CMT Convention Moment Tensor: R T P -1.61e+20 1.33e+20 -2.45e+20 1.33e+20 6.39e+19 -8.34e+19 -2.45e+20 -8.34e+19 9.73e+19 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090407122900/index.html USGS/SLU Moment Tensor Solution ENS 2009/04/07 12:29:28:0 42.44 13.40 12.0 3.3 Italy Stations used: IV.AOI IV.ARVD IV.ASSB IV.BSSO IV.CERA IV.CERT IV.CING IV.FAGN IV.FDMO IV.FIAM IV.GUAR IV.INTR IV.MIDA IV.MNS IV.OFFI IV.PIEI IV.PTRJ IV.SACS IV.TERO IV.TOLF IV.TRIV IV.VAGA MN.AQU Filtering commands used: hp c 0.02 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.05e+21 dyne-cm Mw = 3.59 Z = 7 km Plane Strike Dip Rake NP1 149 55 -93 NP2 335 35 -85 Principal Axes: Axis Value Plunge Azimuth T 3.05e+21 10 241 N 0.00e+00 3 151 P -3.05e+21 79 45 Moment Tensor: (dyne-cm) Component Value Mxx 6.28e+20 Mxy 1.19e+21 Mxz -6.38e+20 Myy 2.23e+21 Myz -8.51e+20 Mzz -2.86e+21 ############## -----------########### ###---------------########## ###------------------######### #####--------------------######### ######----------------------######## #######-----------------------######## ########------------------------######## #########------------ ---------####### ##########------------ P ---------######## ###########----------- ----------####### ############-----------------------####### ############------------------------###### #############----------------------##### ## #########--------------------###### # T ##########-------------------##### ############-----------------#### ################--------------#### ################-----------### ##################-------### ####################-# ############## Global CMT Convention Moment Tensor: R T P -2.86e+21 -6.38e+20 8.51e+20 -6.38e+20 6.28e+20 -1.19e+21 8.51e+20 -1.19e+21 2.23e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20090407122928/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 10 30 -20 3.37 0.3144 WVFGRD96 1.0 10 35 -20 3.33 0.3240 WVFGRD96 2.0 10 25 -20 3.42 0.3961 WVFGRD96 3.0 0 25 -40 3.42 0.4699 WVFGRD96 4.0 350 30 -60 3.45 0.5255 WVFGRD96 5.0 345 30 -65 3.56 0.5803 WVFGRD96 6.0 340 35 -75 3.58 0.6235 WVFGRD96 7.0 335 35 -85 3.59 0.6330 WVFGRD96 8.0 335 35 -85 3.55 0.6051 WVFGRD96 9.0 340 35 -75 3.53 0.5824 WVFGRD96 10.0 340 35 -75 3.53 0.5577 WVFGRD96 11.0 15 45 -20 3.50 0.5339 WVFGRD96 12.0 20 45 -15 3.52 0.5181 WVFGRD96 13.0 20 45 -15 3.53 0.5010 WVFGRD96 14.0 20 45 -15 3.54 0.4817 WVFGRD96 15.0 25 40 -10 3.58 0.4682 WVFGRD96 16.0 25 35 -10 3.59 0.4520 WVFGRD96 17.0 30 40 0 3.60 0.4374 WVFGRD96 18.0 30 40 0 3.61 0.4244 WVFGRD96 19.0 30 40 0 3.62 0.4120 WVFGRD96 20.0 30 40 0 3.63 0.4005 WVFGRD96 21.0 30 40 0 3.64 0.3892 WVFGRD96 22.0 30 40 0 3.65 0.3788 WVFGRD96 23.0 30 40 0 3.66 0.3698 WVFGRD96 24.0 30 40 0 3.67 0.3615 WVFGRD96 25.0 30 40 0 3.68 0.3561 WVFGRD96 26.0 30 40 0 3.68 0.3522 WVFGRD96 27.0 30 45 0 3.70 0.3498 WVFGRD96 28.0 30 45 5 3.70 0.3483 WVFGRD96 29.0 30 50 5 3.72 0.3471
The best solution is
WVFGRD96 7.0 335 35 -85 3.59 0.6330
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3 ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00 7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Thu May 6 04:05:08 CDT 2010